Jul 5, 2003

Dissociation between neurodegeneration and caspase-11-mediated activation of caspase-1 and caspase-3 in a mouse model of amyotrophic lateral sclerosis

The Journal of Neuroscience : the Official Journal of the Society for Neuroscience
Shin Jung KangJunying Yuan

Abstract

Caspase-11 is a key regulator of caspase-1 and caspase-3 activation under pathological conditions. We show here that the expression of caspase-11 is upregulated in the spinal cord of superoxide dismutase 1 (SOD1) G93A transgenic mice, a mouse model of amyotrophic lateral sclerosis (ALS), before the onset of motor dysfunction and remains at the high levels throughout the course of disease. The caspase-1- and caspase-3-like activities, as well as the level of interleukin-1beta, were significantly reduced in the spinal cord of symptomatic caspase-11-/-;SOD1 G93A mice compared with that of caspase-11+/-; SOD1 G93A mice. However, neurodegeneration, inflammatory responses, and the disease onset and progression in SOD1 G93A transgenic mice were not altered by the ablation of caspase-11 gene. Thus, although caspases may contribute to certain aspects of pathology in this mouse model of ALS, their inhibition is not sufficient to prevent neurodegeneration. Our study urges caution when considering the inhibition of caspases as a direct therapeutic method for the treatment of chronic neurodegenerative diseases.

  • References
  • Citations

References

  • We're still populating references for this paper, please check back later.
  • References
  • Citations

Citations

  • This paper may not have been cited yet.

Mentioned in this Paper

superoxide dismutase 1
Systemic Inflammatory Response Syndrome
Apoptosis, Intrinsic Pathway
CASP1 gene
Malignant Neoplasm of Spinal Cord
Caspase-3
Interleukin-1
Nerve Degeneration
House mice
Casp11 protein, mouse

About this Paper

Related Feeds

ALS

Amyotrophic Lateral Sclerosis (ALS), also known as motor neuron disease, is associated with the death of neurons that control voluntary muscles. Discover the latest research on ALS here.

ALS: Therapies

Amyotrophic Lateral Sclerosis (ALS), also known as motor neuron disease, is associated with the death of neurons that control voluntary muscles. Discover the latest research on ALS therapies here.

ALS: Prions

Prions are misfolded proteins which characterize several fatal neurodegenerative diseases. Prion-like mechanisms are associated with the pathogenesis of Amyotrophic Lateral Sclerosis (ALS). Here are the latest discoveries pertaining to this disease.

Antisense Oligonucleotide - Therapies For ALS

This feed focuses on antisense oligonucleotide therapies such as Inotersen, Nusinursen, and Patisiran, in neurodegenerative diseases including amyotrophic lateral sclerosis.

Caspases in Metabolic Diseases

Caspases, the family of cysteine proteases are involved in programmed cell death, but their role in metabolic diseases, inflammation and immunity has been of interested. Discover the latest research on caspases in metabolic diseases here.

ALS: Genetics

Amyotrophic lateral sclerosis (ALS) is a progressive neurodegenerative disorder characterized by muscle weakness. ALS is a genetically heterogeneous disorder with several causative genes. Here are the latest discoveries pertaining to the genetics of this disease.

ALS - Pathogenic Mechanisms

Amyotrophic lateral sclerosis (ALS) is a progressive neurodegenerative disorder characterized by muscle weakness. Here is the latest research investigating pathogenic mechanisms that underlie this genetically heterogeneous disorder.

ALS - Genetics

Amyotrophic lateral sclerosis (ALS) is a progressive neurodegenerative disorder characterized by muscle weakness. Here is the latest research investigating genetic alterations in this genetically heterogeneous disorder.