Apr 29, 2020

Physical properties and actin organization in embryonic stem cells depend on differentiation stage

BioRxiv : the Preprint Server for Biology
K. G. HvidPoul M Bendix


The cellular cytoskeleton provides the cell with mechanical rigidity and mediates mechanical interaction between cells and with the extracellular environment. The actin structure plays a key role in regulating cellular behaviors like motility, cell sorting, or cell polarity. From the earliest stages of development, in naive stem cells, the critical mechanical role of the actin structure is becoming recognized as a vital cue for correct segregation and lineage control of cells and as a regulatory structure that controls several transcription factors. The ultrastructure of the earliest embryonic stem cells has not been investigated in living cells despite the fact that it is well-known that cells undergo morphological shape changes during the earliest stages of development. Here, we provide 3D investigations of the actin cytoskeleton of naive mouse embryonic stem cells (ESCs) in clusters of sizes relevant for early stage development using super resolution optical reconstruction microscopy (STORM). We quantitatively describe the morphological, cytoskeletal and mechanical changes appearing between cells in small clusters at the earliest stages of inner cell mass differentiation, as recapitulated by cells cultured under two media co...Continue Reading

  • References
  • Citations


  • We're still populating references for this paper, please check back later.
  • References
  • Citations


  • This paper may not have been cited yet.

Mentioned in this Paper

Computer Software
Biochemical Pathway
Spatial Distribution
Cell Migration Pathway
Disease Management
Population Group

Related Feeds

BioRxiv & MedRxiv Preprints

BioRxiv and MedRxiv are the preprint servers for biology and health sciences respectively, operated by Cold Spring Harbor Laboratory. Here are the latest preprint articles (which are not peer-reviewed) from BioRxiv and MedRxiv.