Apr 10, 2020

Distinct evolutionary paths in chronic lymphocytic leukemia during resistance to graft-versus-leukemia

BioRxiv : the Preprint Server for Biology
P. BachireddyCatherine J Wu

Abstract

Resistance to the graft-versus-leukemia (GvL) effect remains the major barrier to successful allogeneic hematopoietic stem cell transplantation (allo-HSCT) for aggressive hematologic malignancies. The basis of GvL resistance for advanced lymphoid malignancies remains incompletely understood. We hypothesized that for patients with chronic lymphocytic leukemia (CLL) treated with allo-HSCT, leukemic cell-intrinsic features shape GvL outcomes by directing the evolutionary trajectories of CLL cells. Integrated genetic, transcriptomic and epigenetic analyses of CLL cells from 10 patients revealed that the clinical kinetics of post-HSCT relapse are shaped by distinct molecular dynamics and suggest that the selection pressures of the GvL bottleneck are unlike those imposed by chemotherapy. No selective advantage for HLA loss was observed, even when present in pre-transplant subpopulations. Regardless of post-transplant relapse kinetics, gain of stem cell modules was a common signature associated with leukemia relapse. These data elucidate the biological pathways that underlie GvL resistance and post-transplant relapse.

  • References
  • Citations

References

  • We're still populating references for this paper, please check back later.
  • References
  • Citations

Citations

  • This paper may not have been cited yet.

Mentioned in this Paper

Genome-Wide Association Study
Study
Classification
Genome
G-Banding
Sex Chromosomes
Complete trisomy 18 syndrome
Gene Deletion
Nucleic Acid Sequencing
Cell-Free DNA

Related Feeds

BioRxiv & MedRxiv Preprints

BioRxiv and MedRxiv are the preprint servers for biology and health sciences respectively, operated by Cold Spring Harbor Laboratory. Here are the latest preprint articles (which are not peer-reviewed) from BioRxiv and MedRxiv.

CZI Human Cell Atlas Seed Network

The aim of the Human Cell Atlas (HCA) is to build reference maps of all human cells in order to enhance our understanding of health and disease. The Seed Networks for the HCA project aims to bring together collaborators with different areas of expertise in order to facilitate the development of the HCA. Find the latest research from members of the HCA Seed Networks here.