DOI: 10.1101/453019Oct 24, 2018Paper

Divalent cations can control a switch-like behavior in heterotypic and homotypic RNA coacervates

BioRxiv : the Preprint Server for Biology
Paulo L OnuchicPriya R Banerjee


Liquid-liquid phase separation (LLPS) of RNA-protein complexes plays a major role in the cellular function of membraneless organelles (MLOs). MLOs are sensitive to changes in cellular conditions, such as fluctuations in cytoplasmic ion concentrations. To investigate the effect of these changes on MLOs, we studied the influence of divalent cations on the physical and chemical properties of RNA coacervates. Using a model arginine-rich peptide-RNA system, we predicted and observed that variations in signaling cations exert interaction-dependent effects on RNA LLPS. Changing the ionic environment has opposing effects on the propensity for heterotypic peptide-RNA and homotypic RNA LLPS, which results in a switch between coacervate types. Furthermore, divalent ion variations continuously tune the microenvironments and fluid properties of heterotypic and homotypic droplets. Our results may provide a generic mechanism for modulating the biochemical environment of RNA coacervates in a cellular context.

Related Concepts

Related Feeds

BioRxiv & MedRxiv Preprints

BioRxiv and MedRxiv are the preprint servers for biology and health sciences respectively, operated by Cold Spring Harbor Laboratory. Here are the latest preprint articles (which are not peer-reviewed) from BioRxiv and MedRxiv.