May 2, 2006

Divergence with gene flow in Anopheles funestus from the Sudan Savanna of Burkina Faso, West Africa

Genetics
A P MichelN J Besansky

Abstract

Anopheles funestus is a major vector of malaria across Africa. Understanding its complex and nonequilibrium population genetic structure is an important challenge that must be overcome before vector populations can be successfully perturbed for malaria control. Here we examine the role of chromosomal inversions in structuring genetic variation and facilitating divergence in Burkina Faso, West Africa, where two incipient species (chromosomal forms) of A. funestus, defined principally by rearrangements of chromosome 3R, have been hypothesized. Sampling across an approximately 300-km east-west transect largely contained within the Sudan-Savanna ecoclimatic zone, we analyzed chromosomal inversions, 16 microsatellite loci distributed genomewide, and 834 bp of the mtDNA ND5 gene. Both molecular markers revealed high genetic diversity, nearly all of which was accounted for by within-population differences among individuals, owing to recent population expansion. Across the study area there was no correlation between genetic and geographic distance. Significant genetic differentiation found between chromosomal forms on the basis of microsatellites was not genomewide but could be explained by chromosome 3R alone on the basis of loci insi...Continue Reading

Mentioned in this Paper

Genetic Drift
Genes, Insect
Short Tandem Repeat
DNA, Mitochondrial
Insect Vectors
Malaria
Malaria Vaccines
Human Geography
Chromosome Inversion
Chromosomes

Related Feeds

Antimalarial Agents

Antimalarial agents, also known as antimalarials, are designed to prevent or cure malaria. Discover the latest research on antimalarial agents here.

Antimalarial Agents (ASM)

Antimalarial agents, also known as antimalarials, are designed to prevent or cure malaria. Discover the latest research on antimalarial agents here.