Diversity of ACE2 and its interaction with SARS-CoV-2 receptor binding domain

BioRxiv : the Preprint Server for Biology
J. L. GanVaughn V. Smider

Abstract

COVID-19, the clinical syndrome caused by the SARS-CoV-2 virus, has rapidly spread globally causing millions of infections and hundreds of thousands of deaths. The potential animal reservoirs for SARS-CoV-2 are currently unknown, however sequence analysis has provided plausible potential candidate species. SARS-CoV-2 binds to the angiotensin I converting enzyme 2 (ACE2) to enable its entry into host cells and establish infection. We analyzed the binding surface of ACE2 from several important animal species to begin to understand the parameters for the ACE2 recognition by the SARS-CoV-2 spike protein receptor binding domain (RBD). We employed Shannon entropy analysis to determine the variability of ACE2 across its sequence and particularly in its RBD interacting region, and assessed differences between various species ACE2 and human ACE2. As cattle are a known reservoir for coronaviruses with previous human zoonotic transfer, and has a relatively divergent ACE2 sequence, we compared the binding kinetics of bovine and human ACE2 to SARS-CoV-2 RBD. This revealed a nanomolar binding affinity for bovine ACE2 but an approximate ten-fold reduction of binding compared to human ACE2. Since cows have been experimentally infected by SARS-...Continue Reading

Methods Mentioned

BETA
electron microscopy
enzyme
surface plasmon resonance
chip
ELISA
glycosylation
biolayer interferometry
Biosensor

Software Mentioned

EMBL Boxshade Server
Visual Molecular Dynamics ( VMD
GraphPad Prism
Clustal Omega
ACE2

Related Concepts

Related Feeds

BioRxiv & MedRxiv Preprints

BioRxiv and MedRxiv are the preprint servers for biology and health sciences respectively, operated by Cold Spring Harbor Laboratory. Here are the latest preprint articles (which are not peer-reviewed) from BioRxiv and MedRxiv.