Feb 20, 2019

Diversity of cytosine methylation across the fungal tree of life

Nature Ecology & Evolution
Adam J BewickRobert J Schmitz

Abstract

The generation of thousands of fungal genomes is leading to a better understanding of genes and genomic organization within the kingdom. However, the epigenome, which includes DNA and chromatin modifications, remains poorly investigated in fungi. Large comparative studies in animals and plants have deepened our understanding of epigenomic variation, particularly of the modified base 5-methylcytosine (5mC), but taxonomic sampling of disparate groups is needed to develop unifying explanations for 5mC variation. Here, we utilize the largest phylogenetic resolution of 5mC methyltransferases (5mC MTases) and genome evolution to better understand levels and patterns of 5mC across fungi. We show that extant 5mC MTase genotypes are descendent from ancestral maintenance and de novo genotypes, whereas the 5mC MTases DIM-2 and RID are more recently derived, and that 5mC levels are correlated with 5mC MTase genotype and transposon content. Our survey also revealed that fungi lack canonical gene-body methylation, which distinguishes fungal epigenomes from certain insect and plant species. However, some fungal species possess independently derived clusters of contiguous 5mC encompassing many genes. In some cases, DNA repair pathways and the ...Continue Reading

Mentioned in this Paper

Biochemical Pathway
Patterns
RID
Genome
DNA Repair
Genes
Trees (plant)
Filamentous fungus
Genomic Stability
Cytosine Methylation

Related Feeds

Biodiversity Data

Biodiversity refers to the variety and variability of life on Earth. Biodiversity is typically a measure of variation at the genetic, species, and ecosystem level.Discover the latest research on biodiversity data here.