DOI: 10.1101/003475Mar 20, 2014Paper

Divide and Conquer approach for Genome Classification based on subclass characterization

BioRxiv : the Preprint Server for Biology
Siddanagouda Somanagouda PatilUlavappa Basvanneppa Angadi


Classification of large grass genome sequences has major challenges in functional genomes. The presence of motifs in grass genome chains can make the prediction of the functional behavior of grass genome possible. The correlation between grass genome properties and their motifs is not always obvious, since more than one motif may exist within a genome chain. Due to the complexity of this association most pattern classification algorithms are either vain or time consuming. Attempted to a reduction of high dimensional data that utilizes DAC technique is presented. Data are disjoining into equal multiple sets while preserving the original data distribution in each set. Then, multiple modules are created by using the data sets as independent training sets and classified into respective modules. Finally, the modules are combined to produce the final classification rules, containing all the previously extracted information. The methodology is tested using various grass genome data sets. Results indicate that the time efficiency of our algorithm is improved compared to other known data mining algorithms.

Related Concepts

Related Feeds

BioRxiv & MedRxiv Preprints

BioRxiv and MedRxiv are the preprint servers for biology and health sciences respectively, operated by Cold Spring Harbor Laboratory. Here are the latest preprint articles (which are not peer-reviewed) from BioRxiv and MedRxiv.

Related Papers

Scientific American
Diana Crow
Nature Reviews. Microbiology
Ashley York
JAMA : the Journal of the American Medical Association
© 2021 Meta ULC. All rights reserved