Mar 30, 2020

Genetically encoded live cell sensor for tyrosinated microtubules

BioRxiv : the Preprint Server for Biology
Leslie Y BehMinhaj Sirajuddin

Abstract

Microtubule cytoskeleton exists in various biochemical forms in different cells due to tubulin post-translational modification (PTMs). These PTMs are known to affect microtubule stability, dynamics and interaction with MAPs and motors in a specific manner, widely known as tubulin code hypothesis. At present there exist no tool that can specifically mark tubulin PTMs in live cells, thus severely limiting our understanding of tubulin PTMs. Using yeast display library, we identified a binder against terminal tyrosine of alpha tubulin, a unique PTM site. Extensive characterization validates the robustness and non-perturbing nature of our binder as tyrosination sensor, a live cell tubulin nanobody specific towards tyrosinated or unmodified microtubules. Using which, in real time we followed nocodazole, colchicine and vincristine induced depolymerization events of unmodified microtubules, and found each distinctly perturb microtubule polymer. Together, our work describes the tyrosination sensor and potential applications to study microtubule and PTM processes in living cells.

  • References
  • Citations

References

  • We're still populating references for this paper, please check back later.
  • References
  • Citations

Citations

  • This paper may not have been cited yet.

Mentioned in this Paper

Study
In Vivo
Toxic Shock Syndrome
Nucleosomes
Patterns
Genome
Genes
Malignant Neoplasm of Stomach
Tetrahymena thermophila
Transcription Initiation Site

Related Feeds

BioRxiv & MedRxiv Preprints

BioRxiv and MedRxiv are the preprint servers for biology and health sciences respectively, operated by Cold Spring Harbor Laboratory. Here are the latest preprint articles (which are not peer-reviewed) from BioRxiv and MedRxiv.

CZI Human Cell Atlas Seed Network

The aim of the Human Cell Atlas (HCA) is to build reference maps of all human cells in order to enhance our understanding of health and disease. The Seed Networks for the HCA project aims to bring together collaborators with different areas of expertise in order to facilitate the development of the HCA. Find the latest research from members of the HCA Seed Networks here.