Jul 14, 2011

Dopamine D5 receptors are localized at asymmetric synapses in the rat hippocampus

Neuroscience
T MedinL H Bergersen

Abstract

Functional studies indicate that the dopamine D5 receptor is involved in synaptic transmission in the hippocampus. However, previous anatomical studies have detected D5 receptor labelling primarily on the soma and main dendrites of CA1 pyramidal cells and on dendritic spines in monkey but not in rats. In order to get a better understanding of putative dopamine function in the hippocampus, we quantified the D5 receptor immunoreactivity on the pyramidal cell somas and on spines and dendrites in stratum radiatum and stratum oriens in the hippocampal CA1 region of rats by quantitative immunofluorescence and immunogold electron microscopy. The quantitative immunogold results revealed a higher labelling density on dendritic spines, notably at their synaptic membranes, compared to pyramidal cell somas and dendrites. Hence, dopamine could have effects on spines as well as on somas and dendrites. The labelling density was similar on spines in stratum oriens and stratum radiatum, but the presence of labelling varied between the spines within each stratum, indicating that the effect of dopamine could be diverse between different spines.

Mentioned in this Paper

Buffers
Immunofluorescence Assay
Ethanol
Presynaptic Terminals
Tissue Membrane
Glycerin
Dimethyl Sulfoxide
Halothane
CA1 Pyramidal Cell Area
Immunoreactivity

Related Feeds

Basal Ganglia

Basal Ganglia are a group of subcortical nuclei in the brain associated with control of voluntary motor movements, procedural and habit learning, emotion, and cognition. Here is the latest research.