Apr 26, 2020

Thermal stratification and fish thermal preference explain vertical eDNA distributions in lakes

BioRxiv : the Preprint Server for Biology
Joanne E LittlefairM. E. Cristescu

Abstract

Significant advances have been made towards surveying animal and plant communities using DNA isolated from environmental samples. Despite rapid progress, we lack a comprehensive understanding of the "ecology" of environmental DNA (eDNA), particularly its temporal and spatial distribution and how this is shaped by abiotic and biotic processes. Here, we tested how seasonal variation in thermal stratification and animal habitat preferences influence the distribution of eDNA in lakes. We sampled eDNA depth profiles of five dimictic lakes during both summer stratification and autumn turnover, each containing warm- and cool-water fishes as well as the cold-water stenotherm, lake trout (Salvelinus namaycush). Habitat use by lake trout was validated by acoustic telemetry and was significantly related to eDNA distribution during stratification. Fish eDNA became "stratified" into layers during summer months, reflecting lake stratification and the thermal niches of the species. During summer months, lake trout, which rarely ventured into shallow waters, could only be detected at the deepest layers of the lakes, whereas the eDNA of warm-water fishes was much more abundant above the thermocline. By contrast, during autumn lake turnover, the...Continue Reading

  • References
  • Citations

References

  • We're still populating references for this paper, please check back later.
  • References
  • Citations

Citations

  • This paper may not have been cited yet.

Mentioned in this Paper

Zinc Fingers
Study
In Vivo
Imbalance
Genes
CRISPR-Cas Systems
Chromosome Copy Number Change Panel
Transcription, Genetic
XX Males
Gene Dosage Compensation Mechanism

Related Feeds

BioRxiv & MedRxiv Preprints

BioRxiv and MedRxiv are the preprint servers for biology and health sciences respectively, operated by Cold Spring Harbor Laboratory. Here are the latest preprint articles (which are not peer-reviewed) from BioRxiv and MedRxiv.

CRISPR (general)

Clustered regularly interspaced short palindromic repeats (CRISPR) are DNA sequences in the genome that are recognized and cleaved by CRISPR-associated proteins (Cas). CRISPR-Cas system enables the editing of genes to create or correct mutations. Discover the latest research on CRISPR here.

CRISPR Ribonucleases Deactivation

CRISPR-Cas system enables the editing of genes to create or correct mutations. This feed focuses on mechanisms that underlie deactivation of CRISPR ribonucleases. Here is the latest research.

CRISPR Genome Editing & Therapy (Preprints)

CRISPR-Cas system enables the editing of genes to create or correct mutations. This feed focuses on the application of this system for gene editing and therapy in human diseases.

CRISPR for Genome Editing (Preprints)

Genome editing technologies enable the editing of genes to create or correct mutations. Clustered regularly interspaced short palindromic repeats (CRISPR) are DNA sequences in the genome that are recognized and cleaved by CRISPR-associated proteins (Cas). Here are the latest preprints on the use of CRISPR-Cas system in gene editing.

CRISPR for Genome Editing

Genome editing technologies enable the editing of genes to create or correct mutations. Clustered regularly interspaced short palindromic repeats (CRISPR) are DNA sequences in the genome that are recognized and cleaved by CRISPR-associated proteins (Cas). Here is the latest research on the use of CRISPR-Cas system in gene editing.