Apr 18, 2008

Dynamics of the microglial/amyloid interaction indicate a role in plaque maintenance

The Journal of Neuroscience : the Official Journal of the Society for Neuroscience
Tristan BolmontMichael E Calhoun


Microglial cells aggregate around amyloid plaques in Alzheimer's disease, but, despite their therapeutic potential, various aspects of their reactive kinetics and role in plaque pathogenesis remain hypothetical. Through use of in vivo imaging and quantitative morphological measures in transgenic mice, we demonstrate that local resident microglia rapidly react to plaque formation by extending processes and subsequently migrating toward plaques, in which individual transformed microglia somata remain spatially stable for weeks. The number of plaque-associated microglia increased at a rate of almost three per plaque per month, independent of plaque volume. Larger plaques were surrounded by larger microglia, and a subset of plaques changed in size over time, with an increase or decrease related to the volume of associated microglia. Far from adopting a more static role, plaque-associated microglia retained rapid process and membrane movement at the plaque/glia interface. Microglia internalized systemically injected amyloid-binding dye at a much higher rate in the vicinity of plaques. These results indicate a role for microglia in plaque maintenance and provide a model with multiple targets for therapeutic intervention.

Mentioned in this Paper

Pathogenic Aspects
APP protein, human
House mice
Alzheimer's Disease
Dental Plaque
Amyloid Neuropathies
Amyloid Deposition

Related Feeds

Alzheimer's Disease: APP

Amyloid precursor protein proteolysis is critical for the development of Alzheimer's disease, a neurodegenerative disease associated with accumulation of amyloid plaques. Here is the latest research.

Alzheimer's Disease: Animal models

Alzheimer's disease is a chronic neurodegenerative disease which can be studied using various experimental systems. This feed focuses on animal models used for Alzheimer's disease research.

Alzheimer's Disease: Abeta

Alzheimer's disease (AD) is a chronic neurodegenerative disease associated with accumulation of amyloid plaques, which are comprised of amyloid beta. Here is the latest research in this field.

Alzheimer's Disease: Genes&Microglia

Genes and microglia are associated with the risk of developing and the progression of conditions such as Alzheimer's Disease (AD). Here are the latest discoveries pertaining to this disease.


Astrocytes are glial cells that support the blood-brain barrier, facilitate neurotransmission, provide nutrients to neurons, and help repair damaged nervous tissues. Here is the latest research.