Nov 18, 2005

Early evolution of the venom system in lizards and snakes

Nature
B G FryElazar Kochva

Abstract

Among extant reptiles only two lineages are known to have evolved venom delivery systems, the advanced snakes and helodermatid lizards (Gila Monster and Beaded Lizard). Evolution of the venom system is thought to underlie the impressive radiation of the advanced snakes (2,500 of 3,000 snake species). In contrast, the lizard venom system is thought to be restricted to just two species and to have evolved independently from the snake venom system. Here we report the presence of venom toxins in two additional lizard lineages (Monitor Lizards and Iguania) and show that all lineages possessing toxin-secreting oral glands form a clade, demonstrating a single early origin of the venom system in lizards and snakes. Construction of gland complementary-DNA libraries and phylogenetic analysis of transcripts revealed that nine toxin types are shared between lizards and snakes. Toxinological analyses of venom components from the Lace Monitor Varanus varius showed potent effects on blood pressure and clotting ability, bioactivities associated with a rapid loss of consciousness and extensive bleeding in prey. The iguanian lizard Pogona barbata retains characteristics of the ancestral venom system, namely serial, lobular non-compound venom-sec...Continue Reading

  • References15
  • Citations227

Mentioned in this Paper

Pogona barbata
Jaw
Snake Venoms
Mandible
Toxin
Varanus varius
Maxilla
Suborder Iguania
DNA Library
Blood Coagulation Disorders

Related Feeds

Blood Clotting Disorders

Thrombophilia includes conditions with increased tendency for excessive blood clotting. Blood clotting occurs when the body has insufficient amounts of specialized proteins that make blood clot and stop bleeding. Here is the latest research on blood clotting disorders.

Blood Coagulation Signaling Pathways

Coagulation is the process by which a blood clot is formed. This process includes both the formation of a platelet plug as well as a cascade of clotting factors resulting in the formation of fibrin strands. Find the latest research on coagulation signaling pathways here.