Early temporal dynamics of cellular responses to SARS-CoV-2

BioRxiv : the Preprint Server for Biology
A. BanerjeeKaren Mossman

Abstract

Two highly pathogenic human coronaviruses that cause severe acute respiratory syndrome (SARS) and Middle East respiratory syndrome (MERS) have evolved proteins that can inhibit host antiviral responses, likely contributing to disease progression and high case-fatality rates. SARS-CoV-2 emerged in December 2019 resulting in a global pandemic. Recent studies have shown that SARS-CoV-2 is unable to induce a robust type I interferon (IFN) response in human cells, leading to speculation about the ability of SARS-CoV-2 to inhibit innate antiviral responses. However, innate antiviral responses are dynamic in nature and gene expression levels rapidly change within minutes to hours. In this study, we have performed a time series RNA-seq and selective immunoblot analysis of SARS-CoV-2 infected lung (Calu-3) cells to characterize early virus-host processes. SARS-CoV-2 infection upregulated transcripts for type I IFNs and interferon stimulated genes (ISGs) after 12 hours. Furthermore, we analyzed the ability of SARS-CoV-2 to inhibit type I IFN production and downstream antiviral signaling in human cells. Using exogenous stimuli, we discovered that SARS-CoV-2 is unable to modulate IFN{beta} production and downstream expression of ISGs, such...Continue Reading

Citations

Nov 10, 2020·ELife·Natalia Zamorano Cuervo, Nathalie Grandvaux

❮ Previous
Next ❯

Software Mentioned

R

Related Concepts

Related Feeds

BioRxiv & MedRxiv Preprints

BioRxiv and MedRxiv are the preprint servers for biology and health sciences respectively, operated by Cold Spring Harbor Laboratory. Here are the latest preprint articles (which are not peer-reviewed) from BioRxiv and MedRxiv.