Jul 10, 2015

EC-PSI: Associating Enzyme Commission Numbers with Pfam Domains

BioRxiv : the Preprint Server for Biology
Seyed Ziaeddin AlborziDavid W Ritchie

Abstract

Abstract With the growing number of protein structures in the protein data bank (PDB), there is a need to annotate these structures at the domain level in order to relate protein structure to protein function. Thanks to the SIFTS database, many PDB chains are now cross-referenced with Pfam domains and enzyme commission (EC) numbers. However, these annotations do not include any explicit relationship between individual Pfam domains and EC numbers. This article presents a novel statistical training-based method called EC-PSI that can automatically infer high confidence associations between EC numbers and Pfam domains directly from EC-chain associations from SIFTS and from EC-sequence associations from the SwissProt, and TrEMBL databases. By collecting and integrating these existing EC-chain/sequence annotations, our approach is able to infer a total of 8,329 direct EC-Pfam associations with an overall F-measure of 0.819 with respect to the manually curated InterPro database, which we treat here as a “gold standard” reference dataset. Thus, compared to the 1,493 EC-Pfam associations in InterPro, our approach provides a way to find over six times as many high quality EC-Pfam associations completely automatically.

  • References
  • Citations

References

  • We're still populating references for this paper, please check back later.
  • References
  • Citations

Citations

  • This paper may not have been cited yet.

Mentioned in this Paper

Gephyrin
Protein Function
Viral Structural Proteins
Electronic Cigarettes
Enzyme Activity
Protein Families Database
4-dichlorobenzene
Structure
Molecular Sequence Annotation
Statistical Technique

About this Paper

Related Feeds

BioRxiv & MedRxiv Preprints

BioRxiv and MedRxiv are the preprint servers for biology and health sciences respectively, operated by Cold Spring Harbor Laboratory. Here are the latest preprint articles (which are not peer-reviewed) from BioRxiv and MedRxiv.

© 2020 Meta ULC. All rights reserved