Ectopic vascularized bone formation by human umbilical cord-derived mesenchymal stromal cells expressing bone morphogenetic factor-2 and endothelial cells

Biochemical and Biophysical Research Communications
Seung-Jip YangSung Joo Kim

Abstract

Mesenchymal stromal cells (MSCs) isolated from numerous tissues including human fetal tissue are currently used in cell therapy and regenerative medicine. Among fetal tissues, the umbilical cord (UC) is one of the sources for both MSCs and endothelial cells (ECs). To establish ectopic vascularized bone tissue formation, UC-derived MSCs and ECs were isolated. UC-MSCs expressing human BMP-2 (hBMP-2-MSCs) were generated using an adenoviral system to promote bone formation. These cells were then transplanted with Matrigel into the subcutaneous tissue of an immune deficient NSG mouse, and bone tissue was analyzed after several weeks. The osteogenic differentiation ability of MSCs was elevated by transduction of the hBMP-2 expressing adenoviral system, and vascularization of bone tissue was enhanced by human umbilical vein endothelial cells (HUVEC). In this study, our results provide evidence that MSCs and HUVECs from human umbilical cord are suitable cells to investigate bone tissue engineering. The results also suggest that the co-transplantation of hBMP2-MSCs and HUVECs may be a simple and efficient strategy for improving tissue generation and angiogenesis in bone tissue engineering using stem cells.

Related Concepts

Study
Co-treatment
Human Fetal Tissue
Regenerative Medicine
Matrigel
Immune System Diseases
Angiogenic Process
Cell Therapy
Bone Marrow Stromal Cells
Transduction

Related Feeds

Adult Stem Cells

Adult stem cells reside in unique niches that provide vital cues for their survival, self-renewal, and differentiation. They hold great promise for use in tissue repair and regeneration as a novel therapeutic strategies. Here is the latest research.

Allogenic & Autologous Therapies

Allogenic therapies are generated in large batches from unrelated donor tissues such as bone marrow. In contrast, autologous therapies are manufactures as a single lot from the patient being treated. Here is the latest research on allogenic and autologous therapies.