Jul 18, 2016

Editing of the urease gene by CRISPR-Cas in the diatom Thalassiosira pseudonana

BioRxiv : the Preprint Server for Biology
Amanda HopesThomas Mock

Abstract

Background: CRISPR-Cas is a recent and powerful edition to the molecular toolbox which allows programmable genome editing. It has been used to modify genes in a wide variety of organisms, but only two alga to date. Here we present a methodology to edit the genome of T. pseudonana, a model centric diatom with both ecological significance and high biotechnological potential, using CRISPR-Cas. Results: A single construct wa assembled using Golden Gate cloning. Two sgRNAs were used to introduce a precise 37nt deletion early in the coding region of the urease gene. A high percentage of bi-allelic mutations (≤ 61.5%) were observed in clones with the CRISPR-Cas construct. Growth of bi-allelic mutants in urea led to a significant reduction in growth rate and cell size compared to growth in nitrate. Conclusions: CRISPR-Cas can precisely and efficiently edit the genome of T. pseudonana. The use of Golden Gate cloning to assemble CRISPR-Cas constructs gives additional flexibility to the CRISPR-Cas method and facilitates modifications to target alternative genes or species.

  • References
  • Citations

References

  • We're still populating references for this paper, please check back later.
  • References
  • Citations

Citations

  • This paper may not have been cited yet.

Mentioned in this Paper

Size
Genome
Genes
Gene Deletion Abnormality
Thalassiosira pseudonana
Gene Deletion
Clone
Deletion Mutation
Urea Measurement
Nitrates

About this Paper

Related Feeds

BioRxiv & MedRxiv Preprints

BioRxiv and MedRxiv are the preprint servers for biology and health sciences respectively, operated by Cold Spring Harbor Laboratory. Here are the latest preprint articles (which are not peer-reviewed) from BioRxiv and MedRxiv.

CRISPR (general)

Clustered regularly interspaced short palindromic repeats (CRISPR) are DNA sequences in the genome that are recognized and cleaved by CRISPR-associated proteins (Cas). CRISPR-Cas system enables the editing of genes to create or correct mutations. Discover the latest research on CRISPR here.

CRISPR Ribonucleases Deactivation

CRISPR-Cas system enables the editing of genes to create or correct mutations. This feed focuses on mechanisms that underlie deactivation of CRISPR ribonucleases. Here is the latest research.

CRISPR Genome Editing & Therapy (Preprints)

CRISPR-Cas system enables the editing of genes to create or correct mutations. This feed focuses on the application of this system for gene editing and therapy in human diseases.

CRISPR for Genome Editing (Preprints)

Genome editing technologies enable the editing of genes to create or correct mutations. Clustered regularly interspaced short palindromic repeats (CRISPR) are DNA sequences in the genome that are recognized and cleaved by CRISPR-associated proteins (Cas). Here are the latest preprints on the use of CRISPR-Cas system in gene editing.

Related Papers

Journal of Microbiological Methods
Wesley Cardoso GenerosoEckhard Boles
Seikagaku. The Journal of Japanese Biochemical Society
Tomomi Aida, Kohichi Tanaka
© 2020 Meta ULC. All rights reserved