Effect of peripheral trifluoromethyl groups in artificial iron porphycene cofactor on ligand binding properties of myoglobin

Journal of Inorganic Biochemistry
Takashi MatsuoTakashi Hayashi

Abstract

An iron porphycene, a structural isomer of iron porphyrin, with trifluoromethyl groups at the peripheral position of the framework was incorporated into sperm whale apomyoglobin. The prepared myoglobin shows the higher O(2) affinity than the native protein. However, the oxygen affinity of the reconstituted myoglobin is lower than that of the myoglobin having an iron porphycene without trifluoromethyl groups, which is mainly originated from the enhancement of the O(2) dissociation. The CO affinity of the myoglobin with the trifluoromethylated iron porphycene is similar to that observed for the reference protein having the iron porphycene without trifluoromethyl groups, although their C-O stretching frequencies are significantly different. The relationship between the electronic states of the porphycene ring and the ligand bindings is discussed.

Citations

Jul 29, 2016·Chemical Reviews·Jacek Waluk
Dec 14, 2016·Chemical Reviews·Gonzalo Anguera, David Sánchez-García
Dec 11, 2014·Chemical Communications : Chem Comm·J-P MahyR Ricoux
Sep 30, 2020·ChemPlusChem·Arkadiusz ListkowskiJacek Waluk

Related Concepts

Apomyoglobin
Porphycene
Apoproteins
Carbon Monoxide
Iron
Ligands
Metmyoglobin
Myoglobin
Dioxygen
Porphyrins

Trending Feeds

COVID-19

Coronaviruses encompass a large family of viruses that cause the common cold as well as more serious diseases, such as the ongoing outbreak of coronavirus disease 2019 (COVID-19; formally known as 2019-nCoV). Coronaviruses can spread from animals to humans; symptoms include fever, cough, shortness of breath, and breathing difficulties; in more severe cases, infection can lead to death. This feed covers recent research on COVID-19.

Synthetic Genetic Array Analysis

Synthetic genetic arrays allow the systematic examination of genetic interactions. Here is the latest research focusing on synthetic genetic arrays and their analyses.

Congenital Hyperinsulinism

Congenital hyperinsulinism is caused by genetic mutations resulting in excess insulin secretion from beta cells of the pancreas. Here is the latest research.

Neural Activity: Imaging

Imaging of neural activity in vivo has developed rapidly recently with the advancement of fluorescence microscopy, including new applications using miniaturized microscopes (miniscopes). This feed follows the progress in this growing field.

Chronic Fatigue Syndrome

Chronic fatigue syndrome is a disease characterized by unexplained disabling fatigue; the pathology of which is incompletely understood. Discover the latest research on chronic fatigue syndrome here.

Epigenetic Memory

Epigenetic memory refers to the heritable genetic changes that are not explained by the DNA sequence. Find the latest research on epigenetic memory here.

Cell Atlas of the Human Eye

Constructing a cell atlas of the human eye will require transcriptomic and histologic analysis over the lifespan. This understanding will aid in the study of development and disease. Find the latest research pertaining to the Cell Atlas of the Human Eye here.

Femoral Neoplasms

Femoral Neoplasms are bone tumors that arise in the femur. Discover the latest research on femoral neoplasms here.

STING Receptor Agonists

Stimulator of IFN genes (STING) are a group of transmembrane proteins that are involved in the induction of type I interferon that is important in the innate immune response. The stimulation of STING has been an active area of research in the treatment of cancer and infectious diseases. Here is the latest research on STING receptor agonists.