Dec 1, 1975

Effect of plasma [K+] on the DC potential and on ion distributions between CSF and blood

Journal of Applied Physiology
S W Bledsoe, A H Mines

Abstract

Keeping the arterial pH at 7.4 and PaCO2 at 40 mmHg in eight anesthetized dogs, we acutely raised plasma potassium concentration from 3.4 to 8.2 meq/1, then allowed it to decay back to control levels. The cerebrospinal fluid (CSF)-blood electrical potential difference (pd) increased 13.2 mV per 10-fold increase in plasma [K+]. Again keeping arterial pH at 7.4 and PaCO2 at 40 mmHg, we elevated plasma [K+] in four dogs from 3.3 to 8.0 meq/1 and maintained this level for 6 h. We found 1) that the PD increased from a control value of +1.3 to +8.9mV, showing no tendency to decay over the 6 h; and 2) that the change in PD did not affect the distribution of Na+, K+, H+, Cl-, or HCO3- between blood and CSF over the 6 h. These results suggest that under these conditions the PD between CSF and blood may play no effective role in determining the distributions of these charged species by 6 h. These results are contrasted with recent findings which suggest that H+ and HCO3- are distributed according to passive forces between CSF and blood.

  • References
  • Citations

References

  • We're still populating references for this paper, please check back later.
  • References
  • Citations

Citations

  • This paper may not have been cited yet.

Mentioned in this Paper

Arterial Blood pH Measurement
Plasma Potassium
Diastolic Blood Pressure
Potassium
Carbonic Acid Ions
Cerebrospinal Fluid
Contrast Used
Slow-K
Electrophysiology (Science)
Cations, Monovalent

About this Paper

Related Feeds

CSF & Lymphatic System

This feed focuses on Cerebral Spinal Fluid (CSF) and the lymphatic system. Discover the latest papers using imaging techniques to track CSF outflow into the lymphatic system in animal models.

Related Papers

Journal of Applied Physiology: Respiratory, Environmental and Exercise Physiology
S W BledsoeT F Hornbein
Scandinavian Journal of Clinical and Laboratory Investigation
E SørensenH Rask-Andersen
© 2020 Meta ULC. All rights reserved