The coronavirus proofreading exoribonuclease mediates extensive viral recombination

BioRxiv : the Preprint Server for Biology
J. GribbleMark R Denison


Coronaviruses (CoVs) emerge as zoonoses and cause severe disease in humans, demonstrated by the SARS-CoV-2 (COVID-19) pandemic. RNA recombination is required during normal CoV replication for subgenomic mRNA (sgmRNA) synthesis and generates defective viral genomes (DVGs) of unknown function. However, the determinants and patterns of CoV recombination are unknown. Here, we show that divergent {beta}-CoVs SARS-CoV-2, MERS-CoV, and murine hepatitis virus (MHV) perform extensive RNA recombination in culture, generating similar patterns of recombination junctions and diverse populations of DVGs and sgmRNAs. We demonstrate that the CoV proofreading nonstructural protein (nsp14) 3-to-5 exoribonuclease (nsp14-ExoN) is required for normal CoV recombination and that its genetic inactivation causes significantly decreased frequency and altered patterns of recombination in both infected cells and released virions. Thus, nsp14-ExoN is a key determinant of both high fidelity CoV replication and recombination, and thereby represents a highly-conserved and vulnerable target for virus inhibition and attenuation.

Related Concepts

AdnA protein, Pseudomonas fluorescens
Bone Cements
Plain X-ray
X-Ray Computed Tomography
Crystallography, X-Ray
Ancient DNA
Synchrotron X-Ray Diffraction

Related Feeds

Ancient DNA

Ancient DNA sequences are able to offer valuable insights into molecular evolutionary processes, but are notoriously difficult to analyze due to molecular damage and exogenous dna contamination. Discover the latest research on Ancient DNA here.

BioRxiv & MedRxiv Preprints

BioRxiv and MedRxiv are the preprint servers for biology and health sciences respectively, operated by Cold Spring Harbor Laboratory. Here are the latest preprint articles (which are not peer-reviewed) from BioRxiv and MedRxiv.