PMID: 7811691Dec 14, 1994

Effects of chloride on the kinetics and stereochemistry of chloroperoxidase catalyzed oxidation of sulfides

Biochimica Et Biophysica Acta
P PastaN Gaggero


At pH 3, chloride dramatically influenced both the Km of chloroperoxidase (CPO) for methyl p-tolyl sulfide, which decreased, and its activity, which increased. The Km value changed from 75 microM in the absence of chloride to < or = 1.2 microM in > or = 0.9 mM chloride, and the kcat from 53 s-1 in 0 to 1750 s-1 in 50 mM halide. The kcat/Km value at 0.9 mM chloride was 414 microM -1s-1 compared to 0.7 microM-1s-1 in the absence of the halide. At pH 5, the activating effect was less pronounced. Chloride also acted as inhibitor versus hydrogen peroxide. The data are consistent with a reaction mechanism in which, on hand, chloride competes with hydrogen peroxide for the native enzyme and, on the other hand, activates sulfide oxidation by binding to CPO Compound I to give a CPO-chlorinating intermediate (EOCl-). However, contrary to what happened in the absence of chloride, where the oxidation was enantioselective and an oxygen atom of H2O2 was incorporated in the sulfoxide (from experiments with 18O-labeled H2O2), in the presence of the halide the oxidation was not enantioselective and there was no incorporation of oxygen from H2O2. The data suggest that sulfide oxidation takes place through an enzyme-generated freely dissociable o...Continue Reading


Feb 26, 1986·Biochemical and Biophysical Research Communications·S KobayashiA P Schaap
Jul 25, 2009·Proceedings of the National Academy of Sciences of the United States of America·Xiang He, Dmitriy A Yablonskiy

Related Concepts

Chloride Peroxidase
Chloride Ion Level
Molecular Stereochemistry

Trending Feeds


Coronaviruses encompass a large family of viruses that cause the common cold as well as more serious diseases, such as the ongoing outbreak of coronavirus disease 2019 (COVID-19; formally known as 2019-nCoV). Coronaviruses can spread from animals to humans; symptoms include fever, cough, shortness of breath, and breathing difficulties; in more severe cases, infection can lead to death. This feed covers recent research on COVID-19.

Synthetic Genetic Array Analysis

Synthetic genetic arrays allow the systematic examination of genetic interactions. Here is the latest research focusing on synthetic genetic arrays and their analyses.

Congenital Hyperinsulinism

Congenital hyperinsulinism is caused by genetic mutations resulting in excess insulin secretion from beta cells of the pancreas. Here is the latest research.

Neural Activity: Imaging

Imaging of neural activity in vivo has developed rapidly recently with the advancement of fluorescence microscopy, including new applications using miniaturized microscopes (miniscopes). This feed follows the progress in this growing field.

Chronic Fatigue Syndrome

Chronic fatigue syndrome is a disease characterized by unexplained disabling fatigue; the pathology of which is incompletely understood. Discover the latest research on chronic fatigue syndrome here.

Epigenetic Memory

Epigenetic memory refers to the heritable genetic changes that are not explained by the DNA sequence. Find the latest research on epigenetic memory here.

Cell Atlas of the Human Eye

Constructing a cell atlas of the human eye will require transcriptomic and histologic analysis over the lifespan. This understanding will aid in the study of development and disease. Find the latest research pertaining to the Cell Atlas of the Human Eye here.

Femoral Neoplasms

Femoral Neoplasms are bone tumors that arise in the femur. Discover the latest research on femoral neoplasms here.

STING Receptor Agonists

Stimulator of IFN genes (STING) are a group of transmembrane proteins that are involved in the induction of type I interferon that is important in the innate immune response. The stimulation of STING has been an active area of research in the treatment of cancer and infectious diseases. Here is the latest research on STING receptor agonists.