Effects of cortical ablation on the neurotoxicity and receptor binding of kainic acid in striatum

Journal of Neuroscience Research
K Biziere, J T Coyle


Lesions of the cerebral cortex alter striatal neuronal vulnerability to locally injected kainic acid. Whereas extensive lesions involving the frontal-parietal-occipital cortex are most effective, lesions limited to the frontal or to the dorsal-lateral parietal cortex offer partial protection. The extensive cortical lesions are associated with selective, marked reductions in the presynaptic markers for glutamatergic afferents in striatum. The protective effects of decortication appear between 6 and 24 hours after the lesion and are maintained up to 30 days after decortication. Whereas decortication results in only a transient reduction of specific receptor binding of [3H]kainic acid to striatal membranes, lesion of striatal intrinsic neurons with kainic acid causes a delayed but marked reduction in specific binding of the ligand. Coadministration of L-glutamic acid (1 mumole) with kainic acid (9 nmoles) partially restores the neurotoxic action of kainic acid in the decorticate striatum; GABA, alanine, and proline (1 mumole) are ineffective with regard to restoring kainate's toxicity for striatal GABAergic neurons. These results suggest that afferent input exerts a permissive effect on the neurotoxic action of kainic acid and tha...Continue Reading


Oct 1, 1975·Comparative Biochemistry and Physiology. C: Comparative Pharmacology·A Daoud, P N Usherwood
May 27, 1977·Brain Research·R Schwarcz, J T Coyle
Apr 1, 1978·Proceedings of the National Academy of Sciences of the United States of America·P Campochiaro, J T Coyle
Oct 7, 1977·Science·R M Herndon, J T Coyle
Jan 27, 1978·Brain Research·J W Olney, T de Gubareff
Jan 1, 1976·General Pharmacology·N T BuuN M van Gelder
Jan 1, 1976·Comparative Biochemistry and Physiology. B, Comparative Biochemistry·J E Richmond
Nov 18, 1977·Brain Research·P CampochiaroJ T Coyle
Nov 1, 1976·British Journal of Pharmacology·T J BiscoeJ C Watkins
Feb 1, 1976·Canadian Journal of Physiology and Pharmacology·H McLennan, H V Wheal
Sep 13, 1974·Brain Research·J W OlneyO L Ho
Jan 1, 1974·Pflügers Archiv : European journal of physiology·D Felix, H Künzle
Apr 1, 1974·Proceedings of the National Academy of Sciences of the United States of America·H C Fertuck, M M Salpeter
Dec 1, 1970·Brain Research·H Shinozaki, S Konishi
Jan 1, 1977·Neuroscience Letters·J C Hedreen
Jul 1, 1978·Neuroscience Letters·K Biziere, J T Coyle


Mar 21, 2000·Journal of Neuroscience Research·F I Tarazi, R J Baldessarini
Feb 1, 1984·Naunyn-Schmiedeberg's Archives of Pharmacology·M P MartresJ Costentin
May 1, 1987·Neurochemical Research·M R CohenC Alston
Dec 1, 1991·Aging : Clinical and Experimental Research·J A JosephG S Roth
Aug 26, 2006·Journal of Neural Transmission·H-Q WuR Schwarcz
Oct 22, 1981·European Journal of Pharmacology·K BiziereM Breteau
Dec 3, 1981·European Journal of Pharmacology·R J TaylorC D Marsden
Feb 1, 1981·Neuropharmacology·R ZaczekJ T Coyle
Jan 1, 1987·Molecular Aspects of Medicine·H F Bradford, D W Peterson
Jan 1, 1994·Progress in Neurobiology·G Sperk
Sep 25, 1981·Neuroscience Letters·J V Nadler, E M Smith
Jun 19, 1989·Neuroscience Letters·J T Greenamyre, A B Young
May 27, 1991·Neuroscience Letters·S F FinnM F Beal
Jan 1, 1980·Neuroscience·R M HerndonE Addicks
Aug 15, 1993·European Journal of Pharmacology·T H JohansenE O Nielsen
Apr 2, 1999·Trends in Pharmacological Sciences·R ChittajalluJ M Henley
Jul 3, 1999·Neuroscience·A ChararaY Smith
Feb 21, 2009·The Journal of Neuroscience : the Official Journal of the Society for Neuroscience·Rona K GrahamMichael R Hayden
Jan 1, 1982·Neuropharmacology·R Zaczek, J T Coyle
Oct 1, 1991·Epilepsy Research·J T CoyleJ J Vornov
Apr 28, 2009·Progress in Neurobiology·R SchwarczPaul J Muchowski
Jan 1, 1985·Journal of Neurochemistry·G J McBean, P J Roberts
Oct 1, 1981·Journal of Neurochemistry·R M Mangano, R Schwarcz
Sep 1, 1984·Journal of Neurochemistry·A PastuszkoM Erecińska
Jan 1, 1982·Journal of Neurochemistry·K C Retz, J T Coyle
Jul 1, 1984·Neuropathology and Applied Neurobiology·M C EvansB S Meldrum
Apr 14, 2009·Biochimica Et Biophysica Acta·Robert J Ferrante
Mar 24, 1997·The Journal of Comparative Neurology·S BischoffS Heinemann
Apr 5, 1984·Nature·J W FerkanyJ T Coyle
Apr 3, 1995·The Journal of Comparative Neurology·C M TestaA B Young

Related Concepts

Cerebral Decortication
Choline O-Acetyltransferase
Lentiform Nucleus Structure
Glutamate Decarboxylase
Receptors, Drug
Tyrosine 3-Monooxygenase

Related Feeds

Basal Ganglia

Basal Ganglia are a group of subcortical nuclei in the brain associated with control of voluntary motor movements, procedural and habit learning, emotion, and cognition. Here is the latest research.