Jan 10, 1997

Effects of redox potential and hydroxide inhibition on the pH activity profile of fungal laccases

The Journal of Biological Chemistry
F Xu


The electronic absorption spectrum, susceptibility to fluoride inhibition, redox potential, and substrate turnover of several fungal laccases have been explored as a function of pH. The laccases showed a single spectrally detectable acid-base transition at pH 6-9 and a fluoride inhibition that diminished by increased pH (indicating a competition with hydroxide inhibition). Relatively small changes in the redox potentials (< or = 0.1 V) of laccase were observed over the pH 2.7-11. Under the catalysis of laccase, the apparent oxidation rates (kcat and kcat/Km) of two nonphenolic substrates, potassium ferrocyanide and 2,2'-azinobis-(3-ethylbenzthiazoline-6-sulfonic acid), decreased monotonically as the pH increased. In contrast, the apparent oxidation rates (kcat and kcat/Km) of three 2,6-dimethoxyphenols (whose pKa values range from 7.0 to 8.7) exhibited bell-shaped pH profiles whose maxima were distinct for each laccase but independent of the substrate. By correlating these pH dependences, it is proposed that the balance of two opposing effects, one generated by the redox potential difference between a reducing substrate and the type 1 copper of laccase (which correlates to the electron transfer rate and is favored for a phenoli...Continue Reading

Mentioned in this Paper

Fluoride Measurement
Filamentous fungus
Electron Transport
Laccase B
Metabolic Inhibition

About this Paper

Related Feeds

ASBMB Publications

The American Society for Biochemistry and Molecular Biology (ASBMB) includes the Journal of Biological Chemistry, Molecular & Cellular Proteomics, and the Journal of Lipid Research. Discover the latest research from ASBMB here.