Nov 10, 1975

Effects of strong electrolyte upon the activity of Clostridium perfringens sialidase toward sialyllactose and sialoglycolipids

The Journal of Biological Chemistry
N W BartonA Rosenberg

Abstract

Clostridium perfringens sialidase was purified by affinity chromatography. Kinetic properties of the enzyme were examined with sialyllactose and with mixed sialoglycolipids (gangliosides) as substrates. With the latter substrate in 0.01 M Tris-acete in the absence of strong electrolyte, the pH optimum for enzymatic activity was 6.8. Addition of strong electrolyte (0.01 to 0.10 M Nac1) to the reaction medium caused an acidic shift and a broadening of the pH optimum, Enzymatic activity at pH 5.8 rose approximately 2.5-fold; a concomitant loss of activity at pH 6.8 was also observed. The alteration of enzymatic activity caused by strong electrolyte were dependent upon changes in Vmax. Km remained nearly invariant. Thus, a reversible transition of the enzyme from a relatively inactive to a highly active form occurred as a function of strong electrolyte concentration. Determination of the pK values of the active functional groups of C. perfringens sialidase revealed that the effects of strong electrolyte were exerted upon the pKa group of the enzyme. Strong electrolyte appeared to shield unfavorable electrostatic interactions between polyanionic sialoglycolipid micelles and the enzyme molecule, thus protecting the pKa group from ina...Continue Reading

  • References
  • Citations

References

  • We're still populating references for this paper, please check back later.
  • References
  • Citations

Citations

  • This paper may not have been cited yet.

Mentioned in this Paper

Exertion
Electrolytes
Determination Aspects
Environment
Tromethamine
NACC1 gene
SCN1A gene
Gangliosides
Etiology
Ion Channel

About this Paper

Related Feeds

ASBMB Publications

The American Society for Biochemistry and Molecular Biology (ASBMB) includes the Journal of Biological Chemistry, Molecular & Cellular Proteomics, and the Journal of Lipid Research. Discover the latest research from ASBMB here.