Apr 12, 1988

Electrophysiological actions of norepinephrine in rat lateral hypothalamus. II. An in vitro study of the effects of iontophoretically applied norepinephrine on LH neuronal responses to gamma-aminobutyric acid (GABA)

Brain Research
J T ChengB D Waterhouse


The preceding studies demonstrated that norepinephrine (NE) can consistently augment synaptically mediated (70%) and gamma-aminobutyric acid (GABA)-induced (69%) inhibitory responses of lateral hypothalamic (LH) neurons in vivo. The present experiments further characterized the interactions of NE with LH neuronal responses to GABA in terms of alpha- and beta-receptor mechanisms and demonstrated the utility of the in vitro LH tissue slice preparation as a model for future extra- and intracellular studies of NE modulatory phenomena. Extracellular activity of LH cells was recorded from diencephalic slices (450 microns) incubated in artificial cerebrospinal fluid at 33 degrees C. Interactions between iontophoretically applied NE, isoproterenol (ISO) or phenylephrine (PE) and responses of LH neurons (n = 64) to GABA microiontophoresis were quantitated and characterized using computer-generated ratemeter and histogram records. This analysis revealed two distinct actions of NE on GABA-induced responses of LH neurons. In 8 of 32 cells tested (25%), locally applied NE markedly enhanced inhibitory responses to GABA iontophoresis in a manner identical to that observed in vivo. However, in 20 cells (62.5%), iontophoretic application of NE ...Continue Reading

Mentioned in this Paper

Phenylephrine Hydrochloride
8-Bromo Cyclic Adenosine Monophosphate, Monosodium Salt
GABA Antagonists
8-Bromo Cyclic Adenosine Monophosphate, Sodium Salt
Tissue Slice Preparation
Cyclic AMP

Related Feeds

CSF & Lymphatic System

This feed focuses on Cerebral Spinal Fluid (CSF) and the lymphatic system. Discover the latest papers using imaging techniques to track CSF outflow into the lymphatic system in animal models.

Adrenergic Receptors: Trafficking

Adrenergic receptor trafficking is an active physiological process where adrenergic receptors are relocated from one region of the cell to another or from one type of cell to another. Discover the latest research on adrenergic receptor trafficking here.