DOI: 10.1101/474528Nov 20, 2018Paper

Elucidating the H+ coupled Zn2+ transport mechanism of ZIP4; implications in Acrodermatitis Enteropathica

BioRxiv : the Preprint Server for Biology
Eitan Hoch, Israel Sekler

Abstract

Cellular Zn2+ homeostasis is tightly regulated and primarily mediated by designated Zn2+ transport proteins, namely ZnTs (SLC30) that shuttle Zn2+ efflux, and ZIPs (SLC39) that mediate Zn2+ influx. While the functional determinants of ZnT-mediated Zn2+ efflux are elucidated, those of ZIP transporters are lesser understood. Previous work has suggested three distinct molecular mechanisms: (I) HCO3- or (II) H+ coupled Zn2+ transport, or (III) a pH regulated electrodiffusional mode of transport. Here, using live-cell fluorescent imaging of Zn2+ and H+, in cells expressing ZIP4, we set out to interrogate its function. Intracellular pH changes or the presence of HCO3- failed to induce Zn2+ influx. In contrast, extracellular acidification stimulated ZIP4 dependent Zn2+ uptake. Furthermore, Zn2+ uptake was coupled to enhanced H+ influx in cells expressing ZIP4, thus indicating that ZIP4 is not acting as a pH regulated channel but rather as an H+ powered Zn2+ co-transporter. We further illustrate how this functional mechanism is affected by genetic variants in SLC39A4 that in turn lead to Acrodermatitis Enteropathica, a rare condition of Zn2+ deficiency.

Related Concepts

Bicarbonates
Carrier Proteins
Proton Pump
Ion Channel
Intracellular
Acrodermatitis Enteropathica
Hypoxia
Uptake
Zipper protein, Drosophila
Fluorescence Imaging

Related Feeds

BioRxiv & MedRxiv Preprints

BioRxiv and MedRxiv are the preprint servers for biology and health sciences respectively, operated by Cold Spring Harbor Laboratory. Here are the latest preprint articles (which are not peer-reviewed) from BioRxiv and MedRxiv.