Jan 21, 2014

Embryonic and adult-derived resident cardiac macrophages are maintained through distinct mechanisms at steady state and during inflammation

Immunity
Slava EpelmanDouglas L Mann

Abstract

Cardiac macrophages are crucial for tissue repair after cardiac injury but are not well characterized. Here we identify four populations of cardiac macrophages. At steady state, resident macrophages were primarily maintained through local proliferation. However, after macrophage depletion or during cardiac inflammation, Ly6c(hi) monocytes contributed to all four macrophage populations, whereas resident macrophages also expanded numerically through proliferation. Genetic fate mapping revealed that yolk-sac and fetal monocyte progenitors gave rise to the majority of cardiac macrophages, and the heart was among a minority of organs in which substantial numbers of yolk-sac macrophages persisted in adulthood. CCR2 expression and dependence distinguished cardiac macrophages of adult monocyte versus embryonic origin. Transcriptional and functional data revealed that monocyte-derived macrophages coordinate cardiac inflammation, while playing redundant but lesser roles in antigen sampling and efferocytosis. These data highlight the presence of multiple cardiac macrophage subsets, with different functions, origins, and strategies to regulate compartment size.

  • References32
  • Citations299

Citations

Mentioned in this Paper

Embryo
Biochemical Pathway
Necrosis
FCGR1C gene
TLR4 gene
CCR2 gene
Interleukin-1 Production
Lung
Spleen
Graft Acceptance

Related Feeds

Cardiomyopathy

Cardiomyopathy is a disease of the heart muscle, that can lead to muscular or electrical dysfunction of the heart. It is often an irreversible disease that is associated with a poor prognosis. There are different causes and classifications of cardiomyopathies. Here are the latest discoveries pertaining to this disease.

Cardiovascular Inflammation

Inflammation plays a significant role in the development of cardiovascular diseases, an understanding of these endogenous processes is critical for evaluating the risks and potential treatment strategies. Discover the latest research on cardiovascular inflammation here.

Cardiac Regeneration

Cardiac regeneration enables the repair of irreversibly damaged heart tissue using cutting-edge science, including stem cell and cell-free therapy. Discover the latest research on cardiac regeneration here.

Cardiac Remodeling

Cardiac remodeling in response to a myocardial infarction is characterized by progressive ventricular dilatation, cardiac hypertrophy, fibrosis, and deterioration of cardiac performance. Discover the latest research on Cardiac Remodeling here.

CZI Human Cell Atlas Seed Network

The aim of the Human Cell Atlas (HCA) is to build reference maps of all human cells in order to enhance our understanding of health and disease. The Seed Networks for the HCA project aims to bring together collaborators with different areas of expertise in order to facilitate the development of the HCA. Find the latest research from members of the HCA Seed Networks here.

Adult Stem Cells

Adult stem cells reside in unique niches that provide vital cues for their survival, self-renewal, and differentiation. They hold great promise for use in tissue repair and regeneration as a novel therapeutic strategies. Here is the latest research.