DOI: 10.1101/326371May 20, 2018Paper

Emergence of a node-like population within an in vitro derived Neural Mesodermal Progenitors (NMPs) population

BioRxiv : the Preprint Server for Biology
Shlomit EdriAlfonso Martinez Arias

Abstract

The mammalian embryos Caudal Lateral Epiblast (CLE) harbours bipotent progenitors, called Neural Mesodermal Progenitors (NMPs), that contribute to the spinal cord and the paraxial mesoderm throughout axial elongation. Here we performed a single cell analysis of different in vitro NMPs populations produced either from embryonic stem cells (ESCs) or epiblast stem cells (EpiSCs) and compared them to E8.25 CLE mouse embryos. In our analysis of this region our findings challenge the notion that NMPs should coexpress Sox2 and T. We built a Support Vector Machine (SVM) based on the embryo CLE and use it as a classification model to analyse the in vitro NMP-like populations. We showed that ESCs derived NMPs are heterogeneous and contain few NMP-like cells, whereas EpiSCs derived NMPs, produce a high proportion of cells with the embryo NMP signature. Importantly, we found that the population from which the Epi-NMPs are derived in culture, contains a node-like population, which is responsible for maintaining the expression of T in vitro. These results mimic the events in vivo and suggest a sequence of events for the NMPs emergence.

Related Concepts

Related Feeds

Barrett Esophagus

Barrett’s esophagus if a serious complication of gastroesophageal reflux disease during which the normal esophageal lining changes to tissue that resembles intestinal lining. Here is the latest research.

BioRxiv & MedRxiv Preprints

BioRxiv and MedRxiv are the preprint servers for biology and health sciences respectively, operated by Cold Spring Harbor Laboratory. Here are the latest preprint articles (which are not peer-reviewed) from BioRxiv and MedRxiv.