Jun 20, 2016

Emergence of microbial diversity due to cross-feeding interactions in a spatial model of gut microbial metabolism

BioRxiv : the Preprint Server for Biology
Milan J.A. van Hoek, Roeland M.H. Merks


Background: The human gut contains approximately 10e+14 bacteria, belonging to hundreds of different species. Together, these microbial species form a complex food web that can break down food sources that our own digestive enzymes cannot handle, including complex polysaccharides, producing short chain fatty acids and additional metabolites, e.g., vitamin K. The diversity of microbial diversity is important for colonic health: Changes in the composition of the microbiota have been associated with inflammatory bowel disease, diabetes, obestity and Crohn's disease, and make the microbiota more vulnerable to infestation by harmful species, e.g., Clostridium difficile. To get a grip on the controlling factors of microbial diversity in the gut, we here propose a multi-scale, spatiotemporal dynamic flux-balance analysis model to study the emergence of metabolic diversity in a spatial gut-like, tubular environment. The model features genome-scale metabolic models of microbial populations, resource sharing via extracellular metabolites, and spatial population dynamics and evolution. Results: In this model, cross-feeding interactions emerge readily, despite the species' ability to metabolize sugars autonomously. Interestingly, the commu...Continue Reading

  • References
  • Citations


  • We're still populating references for this paper, please check back later.
  • References
  • Citations


  • This paper may not have been cited yet.

Mentioned in this Paper

Metabolic Process, Cellular
(10E)-dodecen-1-yl acetate
Fatty Acids, Volatile
Complex (molecular entity)
Spatial Distribution
Digestive Enzymes
Metabolic Pathway

About this Paper

Related Feeds

BioRxiv & MedRxiv Preprints

BioRxiv and MedRxiv are the preprint servers for biology and health sciences respectively, operated by Cold Spring Harbor Laboratory. Here are the latest preprint articles (which are not peer-reviewed) from BioRxiv and MedRxiv.