Jan 1, 1996

Endocytosis of GPI-linked membrane folate receptor-alpha

The Journal of Cell Biology
S RijnbouttG J Strous


GPI-linked membrane folate receptors (MFRs) have been implicated in the receptor-mediated uptake of reduced folate cofactors and folate-based chemotherapeutic drugs. We have studied the biosynthetic transport to and internalization of MFR isoform alpha in KB-cells. MFR-alpha was synthesized as a 32-kD protein and converted in a maturely glycosylated 36-38-kD protein 1 h after synthesis. 32-kD MFR-alpha was completely soluble in Triton X-100 at 0 degree C. In contrast, only 33% of the 36-38-kD species could be solubilized at these conditions whereas complete solubilization was obtained in Triton X-100 at 37 degrees C or in the presence of saponin at 0 degree C. Similar solubilization characteristics were found when MFR-alpha at the plasma membrane was labeled with a crosslinkable 125I-labeled photoaffinity-analog of folic acid as a ligand. Triton X-100-insoluble membrane domains containing MFR-alpha could be separated from soluble MFR-alpha on sucrose flotation gradients. Only Triton X-100 soluble MFR-alpha was internalized from the plasma membrane. The reduced-folate-carrier, an integral membrane protein capable of translocating (anti-)folates across membranes, was completely excluded from the Triton X-100-resistant membrane do...Continue Reading

Mentioned in this Paper

Centrifugation, Density Gradient
Biochemical Pathway
Tissue Membrane
Golgi Apparatus
Post-Translational Protein Processing
Hormone Receptors, Cell Surface
Bud - CHV Concept

About this Paper

Related Feeds

Caveolins & Signal Transduction

Caveolins are small proteins with a hairpin loop conformation that are located in the plasma membrane of various cell types where they bind cholesterol and interact with receptors essential for several signal transduction pathways. Here is the latest research.