Aug 18, 2009

Endometriotic stromal cells lose the ability to regulate cell-survival signaling in endometrial epithelial cells in vitro

Molecular Human Reproduction
Hui ZhangXingbo Zhao

Abstract

In normal endometrium, stromal factors regulate the growth of epithelial cells. However, epithelial cells in endometriotic lesions display increased proliferation and decreased apoptosis. This work tested the hypothesis that in endometriosis stromal cells lose the ability to regulate survival signaling and cell growth in epithelial cells. Primary normal, endometriotic eutopic and ectopic epithelial cells were cultured in the presence of medium conditioned by normal, eutopic and ectopic endometriotic endometrial stromal cells. Endometriotic epithelial cells showed higher Survivin expression than normal epithelial cells. Conditioned medium (CM) from normal or eutopic endometriotic stromal cells significantly inhibited the Survivin expression and AKt phosphorylation in normal or eutopic endometriotic epithelial cells. However, CM from ectopic endometriotic stromal cells did not have an inhibitory effect on normal or ectopic endometriotic epithelial cells. Inhibition of AKt phosphorylation and Survivin expression in normal or eutopic endometriotic epithelial cells in the presence of stromal factors from normal or eutopic endometriotic stromal cells was enhanced by progesterone, whereas progesterone had little effect in the presence...Continue Reading

  • References25
  • Citations23

Citations

Mentioned in this Paper

Inhibitor of Apoptosis 2 Protein
Microtubule-Associated Protein 3
Endometrium
Squamous Transitional Epithelial Cell Count
Protein Phosphorylation
Endometrioma
Progesterone
Survivin-deltaEx3, human
Epithelial Cell Proliferation
Immunocytochemistry

Related Feeds

AKT Pathway

This feed focuses on the AKT serine/threonine kinase, which is an important signaling pathway involved in processes such as glucose metabolism and cell survival.

Apoptosis

Apoptosis is a specific process that leads to programmed cell death through the activation of an evolutionary conserved intracellular pathway leading to pathognomic cellular changes distinct from cellular necrosis