PMID: 13828Feb 7, 1977

Energy-linked protonation of quinacrine in beef heart submitochondrial membranes

Biochimica Et Biophysica Acta
C S HuangC P Lee


1. The absorption spectrum of quinacrine in aqueous solution, in the visible region, changes with the pH of the medium in the pH range from 6.0 to 9.0 with an isosbestic point at 353 nm. This indicates that the monoprotonated (quinacrine - H+) and the diprotonated (quinacrine - 2H+) forms of quinacrine at equilibrium in this pH range have a 1 to 1 stoichiometry. 2. The monoprotonated and the dipronated forms to quinacrine exhibit similar fluorescence emission spectra, but distinctive fluorescence excitation spectra. 3. The relative fluorescence quantum yields of quinacrine in aqueous media of various pH values are estimated. The relative fluorescence quantum yield of quinacrine at pH 9.0 is more than 3 fold of that at pH 6.0. 4. The fluorescence excitation and emission spectra, as well as the relative fluorescence quantum yield of quinacrine associated with non-energized submitochondrial membranes, are similar to those of quinacrine alone. 5. Analyses of the absorption spectra, the fluorescence excitation spectra and the relative fluorescence quantum yield indicate that the energy-linked fluorescence decrease of quinacrine associated with the energized submitochondrial membranes results from the protonation of quinacrine - H+ t...Continue Reading

Related Concepts

Bos indicus
Respiratory Chain
Energy Transfer
Hydrogen-Ion Concentration
Tissue Membrane
Mitochondria, Muscle
Quantum Theory
Quinacrine, (S)-Isomer
Fluorescence Spectroscopy

Trending Feeds


Coronaviruses encompass a large family of viruses that cause the common cold as well as more serious diseases, such as the ongoing outbreak of coronavirus disease 2019 (COVID-19; formally known as 2019-nCoV). Coronaviruses can spread from animals to humans; symptoms include fever, cough, shortness of breath, and breathing difficulties; in more severe cases, infection can lead to death. This feed covers recent research on COVID-19.

Synthetic Genetic Array Analysis

Synthetic genetic arrays allow the systematic examination of genetic interactions. Here is the latest research focusing on synthetic genetic arrays and their analyses.

Congenital Hyperinsulinism

Congenital hyperinsulinism is caused by genetic mutations resulting in excess insulin secretion from beta cells of the pancreas. Here is the latest research.

Neural Activity: Imaging

Imaging of neural activity in vivo has developed rapidly recently with the advancement of fluorescence microscopy, including new applications using miniaturized microscopes (miniscopes). This feed follows the progress in this growing field.

Chronic Fatigue Syndrome

Chronic fatigue syndrome is a disease characterized by unexplained disabling fatigue; the pathology of which is incompletely understood. Discover the latest research on chronic fatigue syndrome here.

Epigenetic Memory

Epigenetic memory refers to the heritable genetic changes that are not explained by the DNA sequence. Find the latest research on epigenetic memory here.

Cell Atlas of the Human Eye

Constructing a cell atlas of the human eye will require transcriptomic and histologic analysis over the lifespan. This understanding will aid in the study of development and disease. Find the latest research pertaining to the Cell Atlas of the Human Eye here.

Femoral Neoplasms

Femoral Neoplasms are bone tumors that arise in the femur. Discover the latest research on femoral neoplasms here.

STING Receptor Agonists

Stimulator of IFN genes (STING) are a group of transmembrane proteins that are involved in the induction of type I interferon that is important in the innate immune response. The stimulation of STING has been an active area of research in the treatment of cancer and infectious diseases. Here is the latest research on STING receptor agonists.