Sep 1, 1976

Energy metabolism in respiration-deficient and wild type Chinese hamster fibroblasts in culture

Journal of Cellular Physiology
M Donnelly, Immo E Scheffler

Abstract

This paper presents a comparison of energy metabolism in wild type and respiration-deficient Chinese hamster cells. From previous work (DeFrancesco et. al., '75) it was concluded that the mutant satisfies essentially all of its energy requirements from glycolysis and in this study we measure precisely the amount of glucose consumed and lactate produced per milligram increment of protein in exponentially growing cultures. From these measurements we calculate the amount of ATP derived from glycolysis (and hence the total energy requirement for normal proliferation) to be 105 +/- 15 mumoles ATP/delta mg protein in the mutant. It is 63 +/- 10 mumoles ATP/delta mg protein derived from glycolysis in wild type cells. We present evidence that the total energy requirement of wild type cells is similar to that of the mutant suggesting that approximately 40% of the energy requirement is derived from respiration. The oxidation of glutamine appears to be more significant than the complete oxidation of glucose to CO2 in these Chinese hamster fibroblasts. The amount of ATP required by the mutant cells per milligram increment of protein is relatively independent of pH.

Mentioned in this Paper

Chinese Hamster
Specimen Type - Fibroblasts
Lactate
Energy Metabolism
Cell Respiration
Glucose, (beta-D)-Isomer
Lactic Acid Measurement
Oxidation
Lactates
Respiratory Gaseous Exchange in Organisms

Trending Feeds

COVID-19

Coronaviruses encompass a large family of viruses that cause the common cold as well as more serious diseases, such as the ongoing outbreak of coronavirus disease 2019 (COVID-19; formally known as 2019-nCoV). Coronaviruses can spread from animals to humans; symptoms include fever, cough, shortness of breath, and breathing difficulties; in more severe cases, infection can lead to death. This feed covers recent research on COVID-19.

Bone Marrow Neoplasms

Bone Marrow Neoplasms are cancers that occur in the bone marrow. Discover the latest research on Bone Marrow Neoplasms here.

IGA Glomerulonephritis

IgA glomerulonephritis is a chronic form of glomerulonephritis characterized by deposits of predominantly Iimmunoglobin A in the mesangial area. Discover the latest research on IgA glomerulonephritis here.

Cryogenic Electron Microscopy

Cryogenic electron microscopy (Cryo-EM) allows the determination of biological macromolecules and their assemblies at a near-atomic resolution. Here is the latest research.

STING Receptor Agonists

Stimulator of IFN genes (STING) are a group of transmembrane proteins that are involved in the induction of type I interferon that is important in the innate immune response. The stimulation of STING has been an active area of research in the treatment of cancer and infectious diseases. Here is the latest research on STING receptor agonists.

LRRK2 & Immunity During Infection

Mutations in the LRRK2 gene are a risk-factor for developing Parkinson’s disease. However, LRRK2 has been shown to function as a central regulator of vesicular trafficking, infection, immunity, and inflammation. Here is the latest research on the role of this kinase on immunity during infection.

Antiphospholipid Syndrome

Antiphospholipid syndrome or antiphospholipid antibody syndrome (APS or APLS), is an autoimmune, hypercoagulable state caused by the presence of antibodies directed against phospholipids.

Meningococcal Myelitis

Meningococcal myelitis is characterized by inflammation and myelin damage to the meninges and spinal cord. Discover the latest research on meningococcal myelitis here.

Alzheimer's Disease: MS4A

Variants within membrane-spanning 4-domains subfamily A (MS4A) gene cluster have recently been implicated in Alzheimer's disease by recent genome-wide association studies. Here is the latest research.