Engineered anti-CRISPR proteins for optogenetic control of CRISPR-Cas9

Nature Methods
Felix BubeckDominik Niopek

Abstract

Anti-CRISPR proteins are powerful tools for CRISPR-Cas9 regulation; the ability to precisely modulate their activity could facilitate spatiotemporally confined genome perturbations and uncover fundamental aspects of CRISPR biology. We engineered optogenetic anti-CRISPR variants comprising hybrids of AcrIIA4, a potent Streptococcus pyogenes Cas9 inhibitor, and the LOV2 photosensor from Avena sativa. Coexpression of these proteins with CRISPR-Cas9 effectors enabled light-mediated genome and epigenome editing, and revealed rapid Cas9 genome targeting in human cells.

References

Feb 16, 2002·Methods : a Companion to Methods in Enzymology·K J Livak, T D Schmittgen
Apr 30, 2003·Protein Science : a Publication of the Protein Society·Adrian A Canutescu, Roland L Dunbrack
Sep 13, 2003·Science·Shannon M HarperKevin H Gardner
Jan 22, 2004·Journal of Computational Chemistry·Evangelos A CoutsiasKen A Dill
Nov 6, 2008·PloS One·Carola EnglerSylvestre Marillonnet
Jun 22, 2010·Nature Methods·Devin StricklandTobin R Sosnick
Apr 8, 2011·Bioinformatics·Corinna VehlowMichael Lappe
Mar 6, 2012·Nature Methods·Devin StricklandMichael Glotzer
Jun 21, 2014·Clinical Journal of the American Society of Nephrology : CJASN·Guofen YanAlfred K Cheung
Sep 5, 2014·Biotechnology Journal·Elena SenísDirk Grimm
Oct 11, 2014·Nucleic Acids Research·Eva K BrinkmanBas van Steensel
Sep 9, 2016·Nature Biotechnology·Rodolphe Barrangou, Jennifer A Doudna
Dec 17, 2016·Cell·April PawlukAlan R Davidson
Jan 4, 2017·Cell·Benjamin J RauchJoseph Bondy-Denomy
Apr 30, 2017·Current Opinion in Biotechnology·Florian RichterAndreas Möglich
Jun 13, 2017·Molecular Cell·Hui Yang, Dinshaw J Patel
Jul 15, 2017·Science Advances·Jiyung ShinJennifer A Doudna
Aug 9, 2017·Nature Microbiology·Alexander P HynesSylvain Moineau
Mar 3, 2018·Scientific Reports·Iktae KimJeong-Yong Suh

Citations

Apr 16, 2019·Nucleic Acids Research·Mareike D HoffmannDominik Niopek
May 12, 2019·FEMS Microbiology Letters·Despoina TrasanidouRaymond H J Staals
May 31, 2019·Nature Reviews. Molecular Cell Biology·Adrian Pickar-Oliver, Charles A Gersbach
Jul 2, 2019·Human Molecular Genetics·Claire Domenger, Dirk Grimm
Feb 8, 2020·International Journal of Molecular Sciences·Weiye ZhaoFu-Sen Liang
May 14, 2020·Nucleic Acids Research·Haidong YiYanbin Yin
Dec 11, 2019·Briefings in Functional Genomics·Wen-Di PeiYang Yu
Mar 19, 2020·Annual Review of Biochemistry·Alan R DavidsonErik J Sontheimer
Jun 7, 2020·Annual Review of Microbiology·Tanner WiegandBlake Wiedenheft
Sep 24, 2020·Biochemical Society Transactions·Javier Santos-Moreno, Yolanda Schaerli
Sep 30, 2020·RNA Biology·Yadan Zhang, Mario Andrea Marchisio
Feb 1, 2020·Nature Communications·Taras A RedchukVladislav V Verkhusha
Feb 21, 2020·Science Advances·Sabine AschenbrennerDominik Niopek
Aug 15, 2020·Nature Communications·César Carrasco-LópezJosé L Avalos
Jul 4, 2019·Current Gene Therapy·Cia-Hin Lau, Chung Tin
Dec 7, 2019·Wiley Interdisciplinary Reviews. Systems Biology and Medicine·Genevieve E Ryan, Emma K Farley
Apr 15, 2020·Nature Chemical Biology·Jan MathonyDominik Niopek
Aug 15, 2020·Nature Communications·Agnieszka A GilJared E Toettcher
Jan 2, 2019·Nature Structural & Molecular Biology·Royce A WilkinsonBlake Wiedenheft
Jan 16, 2019·Nature Communications·Muneaki NakamuraLei S Qi
Feb 28, 2020·Genome Biology·Yan-Ru CuiJia Liu
Mar 24, 2020·Nature Methods·Nicole D MarinoJoseph Bondy-Denomy
Jan 17, 2020·Proceedings of the National Academy of Sciences of the United States of America·Xiaohong ChenYuan Ping
Jul 18, 2020·Bone & Joint Research·Jamie Fitzgerald
Aug 9, 2019·Animal Models and Experimental Medicine·Fei ZhangYong Tian
Apr 23, 2020·Cells·Linn Amanda SydingRadislav Sedlacek
Oct 28, 2020·Advanced Biology·Jan Mathony, Dominik Niopek
Nov 3, 2020·Nucleic Acids Research·Jiawei WangTrevor Lithgow
Jan 10, 2021·Nature Cell Biology·Muneaki NakamuraLei S Qi
Nov 17, 2020·Nucleic Acids Research·Agustin Sgro, Pilar Blancafort
Jan 13, 2021·Chembiochem : a European Journal of Chemical Biology·Han WuFenglin Wang
May 24, 2019·Methods : a Companion to Methods in Enzymology·Katharina G WanderaChase L Beisel
Dec 1, 2020·Current Opinion in Chemical Biology·Ashley E ModellAmit Choudhary
Apr 8, 2021·Bioconjugate Chemistry·Daisuke Matsumoto, Wataru Nomura
Nov 28, 2020·Journal of Biochemistry·Giada Forlani, Barbara Di Ventura
May 8, 2021·Nature Chemical Biology·Lian HeYubin Zhou
Jun 5, 2021·Nature Reviews. Molecular Cell Biology·Ning Jia, Dinshaw J Patel

Methods Mentioned

BETA
transfection
cleavage
confocal microscopy
X-ray
PCR
electrophoresis
FCS
transfections
myristoylation

Related Concepts

Related Feeds

CRISPR (general)

Clustered regularly interspaced short palindromic repeats (CRISPR) are DNA sequences in the genome that are recognized and cleaved by CRISPR-associated proteins (Cas). CRISPR-Cas system enables the editing of genes to create or correct mutations. Discover the latest research on CRISPR here.

CRISPR Ribonucleases Deactivation

CRISPR-Cas system enables the editing of genes to create or correct mutations. This feed focuses on mechanisms that underlie deactivation of CRISPR ribonucleases. Here is the latest research.

CRISPR for Genome Editing

Genome editing technologies enable the editing of genes to create or correct mutations. Clustered regularly interspaced short palindromic repeats (CRISPR) are DNA sequences in the genome that are recognized and cleaved by CRISPR-associated proteins (Cas). Here is the latest research on the use of CRISPR-Cas system in gene editing.

Related Papers

Experimental Physiology
Patrick Harrison, Stephen Hart
Nature Biotechnology
Philipp Voigt, Danny Reinberg
Journal of Genetics and Genomics = Yi Chuan Xue Bao
Renjie Jiao, Caixia Gao
Nature Methods
Nicole Rusk
© 2021 Meta ULC. All rights reserved