Mar 16, 2018

Engineered red blood cells for capturing circulating tumor cells with high performance

Dao-Ming ZhuWei Liu


Filtration of circulating tumor cells (CTCs) in peripheral blood is of proven importance for early cancer diagnosis, treatment monitoring, metastasis diagnosis, and prognostic evaluation. However, currently available strategies for enriching CTCs, such as magnetic activated cell sorting (MACS), face serious problems with purity due to nonspecific interactions between beads and leukocytes in the process of capturing. In the present study, the tumor-targeting molecule folic acid (FA) and magnetic nanoparticles (MNPs) were coated on the surface of red blood cells (RBCs) by hydrophobic interaction and chemical conjugation, respectively. The resulting engineered RBCs rapidly adhered to CTCs and the obtained CTC-RBC conjugates were isolated in a magnetic field. After treatment with RBC lysis buffer and centrifugation, CTCs were released and captured. The duration of the entire process was less than three hours. Cell counting showed that the capture efficiency was above 90% and the purity of the obtained CTCs was higher than 75%. The performance of the proposed method exceeded that of MACS® beads (80% for capture efficiency and 20% for purity) under the same conditions. The obtained CTCs could be successfully re-cultured and prolifera...Continue Reading

  • References34
  • Citations4


Mentioned in this Paper

Pathologic Cytolysis
Magnetic Beads
Peripheral Blood
Neoplastic Cell
Red blood cells, blood product

Related Feeds

Adhesion Molecules in Health and Disease

Cell adhesion molecules are a subset of cell adhesion proteins located on the cell surface involved in binding with other cells or with the extracellular matrix in the process called cell adhesion. In essence, cell adhesion molecules help cells stick to each other and to their surroundings. Cell adhesion is a crucial component in maintaining tissue structure and function. Discover the latest research on adhesion molecule and their role in health and disease here.