Sep 26, 2017

Enhancer connectome in primary human cells identifies target genes of disease-associated DNA elements

Nature Genetics
Maxwell R MumbachHoward Y Chang

Abstract

The challenge of linking intergenic mutations to target genes has limited molecular understanding of human diseases. Here we show that H3K27ac HiChIP generates high-resolution contact maps of active enhancers and target genes in rare primary human T cell subtypes and coronary artery smooth muscle cells. Differentiation of naive T cells into T helper 17 cells or regulatory T cells creates subtype-specific enhancer-promoter interactions, specifically at regions of shared DNA accessibility. These data provide a principled means of assigning molecular functions to autoimmune and cardiovascular disease risk variants, linking hundreds of noncoding variants to putative gene targets. Target genes identified with HiChIP are further supported by CRISPR interference and activation at linked enhancers, by the presence of expression quantitative trait loci, and by allele-specific enhancer loops in patient-derived primary cells. The majority of disease-associated enhancers contact genes beyond the nearest gene in the linear genome, leading to a fourfold increase in the number of potential target genes for autoimmune and cardiovascular diseases.

  • References59
  • Citations89

Citations

Mentioned in this Paper

Quantitative Trait Loci
T-Lymphocyte
Connectome
Genome
Genes
CRISPR-Cas Systems
Myocytes, Smooth Muscle
Candidate Disease Gene
Molecular_function
Promoter

Related Feeds

CZI Human Cell Atlas Seed Network

The aim of the Human Cell Atlas (HCA) is to build reference maps of all human cells in order to enhance our understanding of health and disease. The Seed Networks for the HCA project aims to bring together collaborators with different areas of expertise in order to facilitate the development of the HCA. Find the latest research from members of the HCA Seed Networks here.

CRISPR (general)

Clustered regularly interspaced short palindromic repeats (CRISPR) are DNA sequences in the genome that are recognized and cleaved by CRISPR-associated proteins (Cas). CRISPR-Cas system enables the editing of genes to create or correct mutations. Discover the latest research on CRISPR here.

CRISPR Ribonucleases Deactivation

CRISPR-Cas system enables the editing of genes to create or correct mutations. This feed focuses on mechanisms that underlie deactivation of CRISPR ribonucleases. Here is the latest research.

BioHub - Researcher Network

The Chan-Zuckerberg Biohub aims to support the fundamental research and develop the technologies that will enable physicians to cure, prevent, or manage all diseases in our childrens' lifetimes. The CZ Biohub brings together researchers from UC Berkeley, Stanford, and UCSF. Find the latest research from the CZ Biohub researcher network here.

Autoimmune Diseases

Autoimmune diseases occur as a result of an attack by the immune system on the body’s own tissues resulting in damage and dysfunction. There are different types of autoimmune diseases, in which there is a complex and unknown interaction between genetics and the environment. Discover the latest research on autoimmune diseases here.

CREs: Gene & Cell Therapy

Gene and cell therapy advances have shown promising outcomes for several diseases. The role of cis-regulatory elements (CREs) is crucial in the design of gene therapy vectors. Here is the latest research on CREs in gene and cell therapy.

CRISPR for Genome Editing

Genome editing technologies enable the editing of genes to create or correct mutations. Clustered regularly interspaced short palindromic repeats (CRISPR) are DNA sequences in the genome that are recognized and cleaved by CRISPR-associated proteins (Cas). Here is the latest research on the use of CRISPR-Cas system in gene editing.