May 5, 2020

Regeneration in sponge Sycon ciliatum mimics postlarval development

BioRxiv : the Preprint Server for Biology
A. SoubigouVengamanaidu Modepalli


Somatic cells dissociated from an adult sponge can re-organize and develop into a functional juvenile. However, the extent to which regeneration recapitulates embryonic developmental signaling pathways has remained enigmatic for more than a century. To this end, we have standardized and established a sponge Sycon ciliatum regeneration protocol to achieve consistent regeneration in cell culture. From the morphological analysis, we demonstrated that dissociated sponge cells follow a series of morphological events resembling embryonic and postlarval development. Hence, we propose that sponge regeneration represents somatic development. To support our hypothesis, we performed high-throughput sequencing on regenerating samples and compared the data with regular embryonic and postlarval development of Sycon ciliatum. Our comparative transcriptomic analysis illuminates that sponge regeneration is equally as dynamic as embryogenesis. We find that sponge regeneration is orchestrated by complex regulatory mechanisms by recruiting signaling pathways like those utilized in embryonic development to organize into a functional juvenile. In the current study, we lay down the basic framework to study Sycon ciliatum regeneration. Since sponges a...Continue Reading

  • References
  • Citations


  • We're still populating references for this paper, please check back later.
  • References
  • Citations


  • This paper may not have been cited yet.

Mentioned in this Paper

Transcriptional Regulation
Complex (molecular entity)
Transcription, Genetic

Related Feeds

BioRxiv & MedRxiv Preprints

BioRxiv and MedRxiv are the preprint servers for biology and health sciences respectively, operated by Cold Spring Harbor Laboratory. Here are the latest preprint articles (which are not peer-reviewed) from BioRxiv and MedRxiv.

CREs: Gene & Cell Therapy

Gene and cell therapy advances have shown promising outcomes for several diseases. The role of cis-regulatory elements (CREs) is crucial in the design of gene therapy vectors. Here is the latest research on CREs in gene and cell therapy.