Apr 27, 2020

Epicardial transplantation of atrial appendage micrograft patch salvages myocardium after infarction

The Journal of Heart and Lung Transplantation : the Official Publication of the International Society for Heart Transplantation
Xie YanboAADC consortium

Abstract

Ischemic heart disease remains the leading cause of mortality and morbidity worldwide despite improved possibilities in medical care. Alongside interventional therapies, such as coronary artery bypass grafting, adjuvant tissue-engineered and cell-based treatments can provide regenerative improvement. Unfortunately, most of these advanced approaches require multiple lengthy and costly preparation stages without delivering significant clinical benefits. We evaluated the effect of epicardially delivered minute pieces of atrial appendage tissue material, defined as atrial appendage micrografts (AAMs), in a mouse myocardial infarction model. An extracellular matrix patch was used to cover and fix the AAMs onto the surface of the infarcted heart. The matrix-covered AAMs salvaged the heart from the infarction-induced loss of functional myocardium and attenuated scarring. Site-selective proteomics of injured ischemic and uninjured distal myocardium from AAMs-treated and -untreated tissue sections revealed increased expression of several cardiac regeneration-associated proteins (i.e., periostin, transglutaminases, and glutathione peroxidases) and activation of pathways responsible for angiogenesis and cardiogenesis in relation to AAMs t...Continue Reading

  • References
  • Citations

References

  • We're still populating references for this paper, please check back later.
  • References
  • Citations

Citations

  • This paper may not have been cited yet.

Mentioned in this Paper

Dispensing Medication
Ischemic Reperfusion Injury
Cerebral Infarction
Protein Expression
Salvage Therapy
Surface
Cardiac Muscle Tissue Regeneration
Heart
Heart Tissue
Glutathione Peroxidase

Related Feeds

Cardiac Regeneration

Cardiac regeneration enables the repair of irreversibly damaged heart tissue using cutting-edge science, including stem cell and cell-free therapy. Discover the latest research on cardiac regeneration here.

CREs: Gene & Cell Therapy

Gene and cell therapy advances have shown promising outcomes for several diseases. The role of cis-regulatory elements (CREs) is crucial in the design of gene therapy vectors. Here is the latest research on CREs in gene and cell therapy.

Allogenic & Autologous Therapies

Allogenic therapies are generated in large batches from unrelated donor tissues such as bone marrow. In contrast, autologous therapies are manufactures as a single lot from the patient being treated. Here is the latest research on allogenic and autologous therapies.