Apr 17, 2020

Bartonella effector protein C mediates actin stress fiber formation via recruitment of GEF-H1 to the plasma membrane

BioRxiv : the Preprint Server for Biology
S. Marlaire, Christoph Dehio

Abstract

Bartonellae are Gram-negative facultative-intracellular pathogens that use a type-IV-secretion system (T4SS) to translocate a cocktail of Bartonella effector proteins (Beps) into host cells to modulate diverse cellular functions. BepC was initially reported to act in concert with BepF in triggering major actin cytoskeletal rearrangements that result in the internalization of a large bacterial aggregate by the so-called invasome. Later, infection studies with bepC deletion mutants and ectopic expression of BepC have implicated this effector in triggering an actin-dependent cell contractility phenotype characterized by fragmentation of migrating cells due to deficient rear detachment at the trailing edge, and BepE was shown to counterbalance this remarkable phenotype. However, the molecular mechanism of how BepC triggers cytoskeletal changes and the host factors involved remained elusive. Using infection assays, we show here that T4SS-mediated transfer of BepC is sufficient to trigger stress fiber formation in non-migrating epithelial cells and additionally cell fragmentation in migrating endothelial cells. Interactomic analysis revealed binding of BepC to a complex of the Rho guanine nucleotide exchange factor GEF-H1 and the se...Continue Reading

  • References
  • Citations

References

  • We're still populating references for this paper, please check back later.
  • References
  • Citations

Citations

  • This paper may not have been cited yet.

Mentioned in this Paper

Doxorubicin
Study
Tumor Suppressor Genes
SLIT2
Protein Methylation
Genes
MIR17 gene
MIRN218 microRNA, human
Study of Epigenetics
Azacitidine

Related Feeds

BioRxiv & MedRxiv Preprints

BioRxiv and MedRxiv are the preprint servers for biology and health sciences respectively, operated by Cold Spring Harbor Laboratory. Here are the latest preprint articles (which are not peer-reviewed) from BioRxiv and MedRxiv.