PMID: 39597Sep 11, 1979

Equilibrium and kinetic measurements of the redox potentials of cytochromes c2 in vitro and in vivo

Biochimica Et Biophysica Acta
R C Prince, C L Bashford


The equilibrium oxidation-reduction mipoint potential (Em) of isolated Rhodopseudomonas sphaeroides cytochrome c2 exhibits a pH-dependent behavior which can be ascribed to a pK on the oxidized form at pH 8.0 (Pettigrew et al. (1975) Biochim. Biophys. Acta 430, 197-208). However, as with mammalian cytochrome c (Brandt, K.G. Parks, P.C., Czerlinski, G.H. and Hess, G.P. (1966) J. Biol. Chem. 241, 4180-4185) this pK can more properly be attributed to the combination of a pK beyond pH 11, and a slow conformational change of the ferricytochrome. This has been demonstrated by resolving the Em of cytochrome c2 before and after the conformational change. The Em of the unaltered form is essentially pH independent between pH 7 and 11.5, and the lower equilibrium Em is due solely to the conformational change. In vivo the conformational change is prevented by the binding of the cytochrome c2 to the photochemical reaction center, and the cytochrome exhibits an essentially pH-independent Em from pH 5 to 11. The alkaline transition thus has little physiological significance, and it is unlikely that the redox reactions of cytochrome c2 in vivo involve protons.

Related Concepts

Cytochrome c Group
Hydrogen-Ion Concentration
Rhodobacter sphaeroides

Trending Feeds


Coronaviruses encompass a large family of viruses that cause the common cold as well as more serious diseases, such as the ongoing outbreak of coronavirus disease 2019 (COVID-19; formally known as 2019-nCoV). Coronaviruses can spread from animals to humans; symptoms include fever, cough, shortness of breath, and breathing difficulties; in more severe cases, infection can lead to death. This feed covers recent research on COVID-19.

Synthetic Genetic Array Analysis

Synthetic genetic arrays allow the systematic examination of genetic interactions. Here is the latest research focusing on synthetic genetic arrays and their analyses.

Congenital Hyperinsulinism

Congenital hyperinsulinism is caused by genetic mutations resulting in excess insulin secretion from beta cells of the pancreas. Here is the latest research.

Neural Activity: Imaging

Imaging of neural activity in vivo has developed rapidly recently with the advancement of fluorescence microscopy, including new applications using miniaturized microscopes (miniscopes). This feed follows the progress in this growing field.

Chronic Fatigue Syndrome

Chronic fatigue syndrome is a disease characterized by unexplained disabling fatigue; the pathology of which is incompletely understood. Discover the latest research on chronic fatigue syndrome here.

Epigenetic Memory

Epigenetic memory refers to the heritable genetic changes that are not explained by the DNA sequence. Find the latest research on epigenetic memory here.

Cell Atlas of the Human Eye

Constructing a cell atlas of the human eye will require transcriptomic and histologic analysis over the lifespan. This understanding will aid in the study of development and disease. Find the latest research pertaining to the Cell Atlas of the Human Eye here.

Femoral Neoplasms

Femoral Neoplasms are bone tumors that arise in the femur. Discover the latest research on femoral neoplasms here.

STING Receptor Agonists

Stimulator of IFN genes (STING) are a group of transmembrane proteins that are involved in the induction of type I interferon that is important in the innate immune response. The stimulation of STING has been an active area of research in the treatment of cancer and infectious diseases. Here is the latest research on STING receptor agonists.