May 3, 2020

Sleep Deficits and Cannabis Use Behaviors: An Analysis of Shared Genetics Using Linkage Disequilibrium Score Regression and Polygenic Risk Prediction

BioRxiv : the Preprint Server for Biology
Evan A WinigerJ. K. Hewitt


Study Objectives: Estimate the genetic relationship of cannabis use with sleep deficits and eveningness chronotype. Methods: We used linkage disequilibrium score regression (LDSC) to analyze genetic correlations between sleep deficits and cannabis use behaviors. Secondly, we generated sleep deficit polygenic risk scores (PRSs) and estimated their ability to predict cannabis use behaviors using logistic regression. Summary statistics came from existing genome wide association studies (GWASs) of European ancestry that were focused on sleep duration, insomnia, chronotype, lifetime cannabis use, and cannabis use disorder (CUD). A target sample for PRS prediction consisted of high-risk participants and participants from twin/family community-based studies (n = 796, male = 66%; mean age = 26.81). Target data consisted of self-reported sleep (sleep duration, feeling tired, and taking naps) and cannabis use behaviors (lifetime use, number of lifetime uses, past 180-day use, age of first use, and lifetime CUD symptoms). Results: Significant genetic correlation between lifetime cannabis use and eveningness chronotype (rG = 0.24, p < 0.01), as well as between CUD and both short sleep duration (<7 h) (rG = 0.23, p = 0.02) and insomnia (rG ...Continue Reading

  • References
  • Citations


  • We're still populating references for this paper, please check back later.
  • References
  • Citations


  • This paper may not have been cited yet.

Mentioned in this Paper

Human immunodeficiency virus 1 RNA
DNA, Viral
Virus Replication
Nucleic Acid Sequencing
Antiretroviral Therapy
Therapeutic Immunosuppression

Related Feeds

BioRxiv & MedRxiv Preprints

BioRxiv and MedRxiv are the preprint servers for biology and health sciences respectively, operated by Cold Spring Harbor Laboratory. Here are the latest preprint articles (which are not peer-reviewed) from BioRxiv and MedRxiv.