Establishment of regions of genomic activity during the Drosophila maternal to zygotic transition

BioRxiv : the Preprint Server for Biology
Xiao-Yong LiMichael B Eisen


A conspicuous feature of early animal development is the lack of transcription from the embryonic genome, and it typically takes several hours to several days (depending on the species) until widespread transcription of the embryonic genome begins. Although this transition is ubiquitous, relatively little is known about how the shift from a transcriptionally quiescent to transcriptionally active genome is controlled. We describe here the genome-wide distributions and temporal dynamics of nucleosomes and post-translational histone modifications through the maternal-to-zygotic transition in embryos of the pomace fly Drosophila melanogaster . At mitotic cycle 8, when few zygotic genes are being transcribed, embryonic chromatin is in a relatively simple state: there are few nucleosome free regions, undetectable levels of the histone methylation marks characteristic of mature chromatin, and low levels of histone acetylation at a relatively small number of loci. Histone acetylation increases by cycle 11, but it is not until cycle 13 that nucleosome free regions and domains of histone methylation become widespread. Early histone acetylation is strongly associated with regions that we have previously shown are bound in early embryos by...Continue Reading

Related Concepts

Enzyme Repression
Post-Translational Protein Processing
Transcription Factor

Related Feeds

BioRxiv & MedRxiv Preprints

BioRxiv and MedRxiv are the preprint servers for biology and health sciences respectively, operated by Cold Spring Harbor Laboratory. Here are the latest preprint articles (which are not peer-reviewed) from BioRxiv and MedRxiv.