Estimating Energy Parameters for RNA Secondary Structure Predictions Using Both Experimental and Computational Data

IEEE/ACM Transactions on Computational Biology and Bioinformatics
Shimpei NishidaMichiaki Hamada


Computational RNA secondary structure prediction depends on a large number of nearest-neighbor free-energy parameters, including 10 parameters for Watson-Crick stacked base pairs that were estimated from experimental measurements of the free energies of 90 RNA duplexes. These experimental data are provided by time-consuming and cost-intensive experiments. In contrast, various modified nucleotides in RNAs, which would affect not only their structures but also functions, have been found, and rapid determination of energy parameters for a such modified nucleotides is needed. To reduce the high cost of determining energy parameters, we propose a novel method to estimate energy parameters from both experimental and computational data, where the computational data are provided by a recently developed molecular dynamics simulation protocol. We evaluate our method for Watson-Crick stacked base pairs, and show that parameters estimated from 10 experimental data items and 10 computational data items can predict RNA secondary structures with accuracy comparable to that using conventional parameters. The results indicate that the combination of experimental free-energy measurements and molecular dynamics simulations is capable of estimatin...Continue Reading

Related Concepts

DNA Conformation
Computational Molecular Biology
Base Pairing
Molecular Dynamics

Trending Feeds


Coronaviruses encompass a large family of viruses that cause the common cold as well as more serious diseases, such as the ongoing outbreak of coronavirus disease 2019 (COVID-19; formally known as 2019-nCoV). Coronaviruses can spread from animals to humans; symptoms include fever, cough, shortness of breath, and breathing difficulties; in more severe cases, infection can lead to death. This feed covers recent research on COVID-19.

Synthetic Genetic Array Analysis

Synthetic genetic arrays allow the systematic examination of genetic interactions. Here is the latest research focusing on synthetic genetic arrays and their analyses.

Congenital Hyperinsulinism

Congenital hyperinsulinism is caused by genetic mutations resulting in excess insulin secretion from beta cells of the pancreas. Here is the latest research.

Neural Activity: Imaging

Imaging of neural activity in vivo has developed rapidly recently with the advancement of fluorescence microscopy, including new applications using miniaturized microscopes (miniscopes). This feed follows the progress in this growing field.

Chronic Fatigue Syndrome

Chronic fatigue syndrome is a disease characterized by unexplained disabling fatigue; the pathology of which is incompletely understood. Discover the latest research on chronic fatigue syndrome here.

Epigenetic Memory

Epigenetic memory refers to the heritable genetic changes that are not explained by the DNA sequence. Find the latest research on epigenetic memory here.

Cell Atlas of the Human Eye

Constructing a cell atlas of the human eye will require transcriptomic and histologic analysis over the lifespan. This understanding will aid in the study of development and disease. Find the latest research pertaining to the Cell Atlas of the Human Eye here.

Femoral Neoplasms

Femoral Neoplasms are bone tumors that arise in the femur. Discover the latest research on femoral neoplasms here.

STING Receptor Agonists

Stimulator of IFN genes (STING) are a group of transmembrane proteins that are involved in the induction of type I interferon that is important in the innate immune response. The stimulation of STING has been an active area of research in the treatment of cancer and infectious diseases. Here is the latest research on STING receptor agonists.

Related Papers

Cold Spring Harbor Symposia on Quantitative Biology
D H TurnerR Kierzek
Methods : a Companion to Methods in Enzymology
Justin T Low, Kevin M Weeks
© 2021 Meta ULC. All rights reserved