Estimating the evolution of human life history traits in age-structured populations

BioRxiv : the Preprint Server for Biology
Ryan Baldini


I propose a method that estimates the selection response of all vital rates in an age-structured population. I assume that vital rates are determined by the additive genetic contributions of many loci. The method uses all relatedness information in the sample to inform its estimates of genetic parameters, via an MCMC Bayesian framework. One can use the results to estimate the selection response of any life history trait that is a function of the vital rates, including the age at first reproduction, total lifetime fertility, survival to adulthood, and others. This method closely ties the empirical analysis of life history evolution to dynamically complete models of natural selection, and therefore enjoys some theoretical advantages over other methods. I demonstrate the method on a simulated model of evolution with two age classes. Finally I discuss how the method can be extended to more complicated cases.

Related Concepts

Biological Evolution
Empirical Research
BAT Loci
Population Group

Related Feeds

BioRxiv & MedRxiv Preprints

BioRxiv and MedRxiv are the preprint servers for biology and health sciences respectively, operated by Cold Spring Harbor Laboratory. Here are the latest preprint articles (which are not peer-reviewed) from BioRxiv and MedRxiv.