Feb 8, 2016

Estimation of Voxelwise Effective Connectivities: Applications to High Connectivity Sub-Regions within Hippocampal and within Corticostriatal Networks

BioRxiv : the Preprint Server for Biology
Ruben Sanchez-RomeroClark Glymour


Standard BOLD connectivity analyses depend on aggregating the signals of individual voxel within regions of interest (ROIs). In certain cases, this aggregation implies a loss of valuable functional and anatomical information about sub-regions of voxels that drive the ROI level connectivity. We describe a data-driven statistical search method that identifies the voxels that are chiefly responsible for exchanging signals between regions of interest that are known to be effectively connected. We apply the method to high-resolution resting state functional magnetic resonance imaging (rs-fMRI) data from medial temporal lobe regions of interest of a single healthy individual measured repeated times over a year and a half. The method successfully recovered densely connected voxels within larger ROIs of entorhinal cortex and hippocampus subfields consistent with the well-known medial temporal lobe structural connectivity. To assess the performance of our method in more common scanning protocols we apply it to resting state fMRI data of corticostriatal regions of interest for 50 healthy individuals. The method recovered densely connected voxels within the caudate nucleus and the putamen in good qualitative agreement with structural conn...Continue Reading

  • References
  • Citations


  • We're still populating references for this paper, please check back later.
  • References
  • Citations


  • This paper may not have been cited yet.

Mentioned in this Paper

Magnetic Resonance Imaging
Malignant Neoplasm of Temporal Lobe
Entire Temporal Lobe
Entire Entorhinal Cortex
Entire Putamen
Genus Hippocampus
Structure of Hippocampal Formation
Entire Hippocampus

About this Paper

Related Feeds

BioRxiv & MedRxiv Preprints

BioRxiv and MedRxiv are the preprint servers for biology and health sciences respectively, operated by Cold Spring Harbor Laboratory. Here are the latest preprint articles (which are not peer-reviewed) from BioRxiv and MedRxiv.

Basal Ganglia

Basal Ganglia are a group of subcortical nuclei in the brain associated with control of voluntary motor movements, procedural and habit learning, emotion, and cognition. Here is the latest research.