Jan 1, 1992

Evidence for two types of internal Ca2+ stores in canine mesenteric artery with different refilling mechanisms

The American Journal of Physiology
A M LowE E Daniel

Abstract

Novel transient biphasic responses of the dog mesenteric artery to phenylephrine hydrochloride (PE, 10 microM) in Ca(2+)-free medium containing 50 microM ethylene glycol-bis(beta-aminoethyl ether)-N,N,N',N'-tetraacetic acid (EGTA) have been analyzed. The initial component was significantly inhibited by ryanodine (30-100 microM), an agonist enhancing Ca2+ release from the sarcoplasmic reticulum, whereas the second was significantly inhibited by nifedipine (1 microM), and L-type Ca2+ channel antagonist, or EGTA, to chelate Ca2+, and was potentiated by BAY K 8644 (1 microM), an L-type Ca2+ channel agonist. After repletion of Ca2+ stores in normal Krebs solution or in high KCl (60 mM) Krebs, the first component was inhibited by cyclopiazonic acid (CPA, 30 microM), a putative, reversible, and selective microsomal Ca2+ pump adenosinetriphosphatase inhibitor. BAY K 8644 potentiated the second component in the presence of CPA. The inhibition of the first component by CPA suggests that the refilling ultimately requires the CPA-sensitive Ca2+ pump for Ca2+ resequestration. However, the second component may refill by a CPA-independent route opened by BAY K 8644. These results, taken as a whole, indicate that the biphasic PE response in Ca...Continue Reading

  • References
  • Citations4

References

  • We're still populating references for this paper, please check back later.
  • References
  • Citations4

Citations

Mentioned in this Paper

Phenylephrine Hydrochloride
Calcium
Calcium Channel
Slow-K
Egtazic Acid Sodium Salt
Mesenteric Arteries
Vascular Constriction (Function)
Calcium Channel Blockers
Canis familiaris
Endoplasmic Reticulum

About this Paper

Trending Feeds

COVID-19

Coronaviruses encompass a large family of viruses that cause the common cold as well as more serious diseases, such as the ongoing outbreak of coronavirus disease 2019 (COVID-19; formally known as 2019-nCoV). Coronaviruses can spread from animals to humans; symptoms include fever, cough, shortness of breath, and breathing difficulties; in more severe cases, infection can lead to death. This feed covers recent research on COVID-19.

Bone Marrow Neoplasms

Bone Marrow Neoplasms are cancers that occur in the bone marrow. Discover the latest research on Bone Marrow Neoplasms here.

IGA Glomerulonephritis

IgA glomerulonephritis is a chronic form of glomerulonephritis characterized by deposits of predominantly Iimmunoglobin A in the mesangial area. Discover the latest research on IgA glomerulonephritis here.

Cryogenic Electron Microscopy

Cryogenic electron microscopy (Cryo-EM) allows the determination of biological macromolecules and their assemblies at a near-atomic resolution. Here is the latest research.

STING Receptor Agonists

Stimulator of IFN genes (STING) are a group of transmembrane proteins that are involved in the induction of type I interferon that is important in the innate immune response. The stimulation of STING has been an active area of research in the treatment of cancer and infectious diseases. Here is the latest research on STING receptor agonists.

LRRK2 & Immunity During Infection

Mutations in the LRRK2 gene are a risk-factor for developing Parkinson’s disease. However, LRRK2 has been shown to function as a central regulator of vesicular trafficking, infection, immunity, and inflammation. Here is the latest research on the role of this kinase on immunity during infection.

Antiphospholipid Syndrome

Antiphospholipid syndrome or antiphospholipid antibody syndrome (APS or APLS), is an autoimmune, hypercoagulable state caused by the presence of antibodies directed against phospholipids.

Meningococcal Myelitis

Meningococcal myelitis is characterized by inflammation and myelin damage to the meninges and spinal cord. Discover the latest research on meningococcal myelitis here.

Alzheimer's Disease: MS4A

Variants within membrane-spanning 4-domains subfamily A (MS4A) gene cluster have recently been implicated in Alzheimer's disease by recent genome-wide association studies. Here is the latest research.