Dec 16, 2008

Evidence of bias towards buffered codons in human transcripts

Proceedings of the ... IEEE International Symposium on Signal Processing and Information Technology
Rami N Mahdi, Eric C Rouchka

Abstract

Codon usage bias is well established in different species from bacteria to mammals. A number of models have been proposed to show this bias as a balance between mutation and selection. Most of these models emphasize controlling the speed of protein translation from the mRNA and increasing the accuracy where this bias is dependent on the abundance and properties of the available tRNA. In this work, codon usage bias in general is considered from a different angle based on a new hypothesis where selection is expected to act in a direction to favor codons that are more buffered, or protected, from mutation than those more sensitive to mutation. It is anticipated that the more buffered the original coding sequence, the higher the survival chance for the whole organism since the resulting protein sequence remains unchanged. Two different complementary measures are developed to compute the average buffering capacity in a given sequence. We show that the buffering capacity of coding sequences in humans is in general higher than that of randomly generated sequences and that of shifted reading frames. Highly expressed genes are shown to have an even higher buffering capacity than non-housekeeping genes. This result is to be expected due ...Continue Reading

  • References
  • Citations

References

  • We're still populating references for this paper, please check back later.
  • References
  • Citations

Citations

  • This paper may not have been cited yet.

Mentioned in this Paper

Buffers
MT-TA gene
Triplet Codon-amino Acid Adaptor Activity
Transfer RNA
Protein Biosynthesis
Codon Genus
Codon (Nucleotide Sequence)
Reading Frames (Nucleotide Sequence)
Open Reading Frames
Mutation Abnormality

Trending Feeds

COVID-19

Coronaviruses encompass a large family of viruses that cause the common cold as well as more serious diseases, such as the ongoing outbreak of coronavirus disease 2019 (COVID-19; formally known as 2019-nCoV). Coronaviruses can spread from animals to humans; symptoms include fever, cough, shortness of breath, and breathing difficulties; in more severe cases, infection can lead to death. This feed covers recent research on COVID-19.

Bone Marrow Neoplasms

Bone Marrow Neoplasms are cancers that occur in the bone marrow. Discover the latest research on Bone Marrow Neoplasms here.

IGA Glomerulonephritis

IgA glomerulonephritis is a chronic form of glomerulonephritis characterized by deposits of predominantly Iimmunoglobin A in the mesangial area. Discover the latest research on IgA glomerulonephritis here.

Cryogenic Electron Microscopy

Cryogenic electron microscopy (Cryo-EM) allows the determination of biological macromolecules and their assemblies at a near-atomic resolution. Here is the latest research.

STING Receptor Agonists

Stimulator of IFN genes (STING) are a group of transmembrane proteins that are involved in the induction of type I interferon that is important in the innate immune response. The stimulation of STING has been an active area of research in the treatment of cancer and infectious diseases. Here is the latest research on STING receptor agonists.

LRRK2 & Immunity During Infection

Mutations in the LRRK2 gene are a risk-factor for developing Parkinson’s disease. However, LRRK2 has been shown to function as a central regulator of vesicular trafficking, infection, immunity, and inflammation. Here is the latest research on the role of this kinase on immunity during infection.

Antiphospholipid Syndrome

Antiphospholipid syndrome or antiphospholipid antibody syndrome (APS or APLS), is an autoimmune, hypercoagulable state caused by the presence of antibodies directed against phospholipids.

Meningococcal Myelitis

Meningococcal myelitis is characterized by inflammation and myelin damage to the meninges and spinal cord. Discover the latest research on meningococcal myelitis here.

Alzheimer's Disease: MS4A

Variants within membrane-spanning 4-domains subfamily A (MS4A) gene cluster have recently been implicated in Alzheimer's disease by recent genome-wide association studies. Here is the latest research.