Aug 11, 2000

Evolutionary dynamics of pathogen resistance and tolerance

Evolution; International Journal of Organic Evolution
B A Roy, J W Kirchner


Host organisms can respond to the threat of disease either through resistance defenses (which inhibit or limit infection) or through tolerance strategies (which do not limit infection, but reduce or offset its fitness consequences). Here we show that resistance and tolerance can have fundamentally different evolutionary outcomes, even when they have equivalent short-term benefit for the host. As a gene conferring disease resistance spreads through a population, the incidence of infection declines, reducing the fitness advantage of carrying the resistance gene. Thus genes conferring complete resistance cannot become fixed (i.e., universal) by selection in a host population, and diseases cannot be eliminated solely by natural selection for host resistance. By contrast, as a gene conferring disease tolerance spreads through a population, disease incidence rises, increasing the evolutionary advantage of carrying the tolerance gene. Therefore, any tolerance gene that can invade a host population will tend to be driven to fixation by selection. As predicted, field studies of diverse plant species infected by rust fungi confirm that resistance traits tend to be polymorphic and tolerance traits tend to be fixed. These observations sugg...Continue Reading

  • References12
  • Citations190


Mentioned in this Paper

Filamentous fungus
Genetics, Population
Sample Fixation
Genes, vif
Disease Resistance
Parasitic Diseases
Plant Diseases
Biological Evolution

About this Paper

Trending Feeds


Coronaviruses encompass a large family of viruses that cause the common cold as well as more serious diseases, such as the ongoing outbreak of coronavirus disease 2019 (COVID-19; formally known as 2019-nCoV). Coronaviruses can spread from animals to humans; symptoms include fever, cough, shortness of breath, and breathing difficulties; in more severe cases, infection can lead to death. This feed covers recent research on COVID-19.

Bone Marrow Neoplasms

Bone Marrow Neoplasms are cancers that occur in the bone marrow. Discover the latest research on Bone Marrow Neoplasms here.

IGA Glomerulonephritis

IgA glomerulonephritis is a chronic form of glomerulonephritis characterized by deposits of predominantly Iimmunoglobin A in the mesangial area. Discover the latest research on IgA glomerulonephritis here.

Cryogenic Electron Microscopy

Cryogenic electron microscopy (Cryo-EM) allows the determination of biological macromolecules and their assemblies at a near-atomic resolution. Here is the latest research.

STING Receptor Agonists

Stimulator of IFN genes (STING) are a group of transmembrane proteins that are involved in the induction of type I interferon that is important in the innate immune response. The stimulation of STING has been an active area of research in the treatment of cancer and infectious diseases. Here is the latest research on STING receptor agonists.

LRRK2 & Immunity During Infection

Mutations in the LRRK2 gene are a risk-factor for developing Parkinson’s disease. However, LRRK2 has been shown to function as a central regulator of vesicular trafficking, infection, immunity, and inflammation. Here is the latest research on the role of this kinase on immunity during infection.

Antiphospholipid Syndrome

Antiphospholipid syndrome or antiphospholipid antibody syndrome (APS or APLS), is an autoimmune, hypercoagulable state caused by the presence of antibodies directed against phospholipids.

Meningococcal Myelitis

Meningococcal myelitis is characterized by inflammation and myelin damage to the meninges and spinal cord. Discover the latest research on meningococcal myelitis here.

Alzheimer's Disease: MS4A

Variants within membrane-spanning 4-domains subfamily A (MS4A) gene cluster have recently been implicated in Alzheimer's disease by recent genome-wide association studies. Here is the latest research.

© 2020 Meta ULC. All rights reserved