Nov 4, 2018

Experience-specific anterograde amnesia: memory reacquisition deficit phenomenon and its characterization in the vertebrate learning model

BioRxiv : the Preprint Server for Biology
Anna TiunovaKonstantin Anokhin


A common assumption from experiments that interfere with memory consolidation is that the resultant amnesia returns the brain of an animal to a tabula rasa state with respect to disturbed experience. However, recent studies in terrestrial snail classical conditioning revealed an odd phenomenon: animals were unable to relearn conditioned avoidance of specific food after this memory had been impaired by protein-synthesis inhibitors or N-methyl-D-aspartate (NMDA) receptor antagonists. Here we examined whether such specific memory reacquisition deficit can also be observed in vertebrate learning. We trained day-old chicks in a one-trial passive avoidance task by presenting them a bead of a specific color covered with a repellent substance, methyl anthranilate. Training was preceded by administration of the protein synthesis inhibitor anisomycin or the NMDA receptor antagonist MK-801. Both drugs produced permanent amnesia, and no spontaneous recovery of memory was observed. A second training was given to the amnestic animals either using a bead of the same color (retraining) or a new color (novel training). The interval between the first and second training was 2 or 24 h, and the retention test was given from 30 min to 48 h after th...Continue Reading

  • References
  • Citations


  • We're still populating references for this paper, please check back later.
  • References
  • Citations


  • This paper may not have been cited yet.

Mentioned in this Paper

RASA1 wt Allele
Methyl anthranilate
Protein Synthesis Inhibitors

About this Paper

Related Feeds

BioRxiv & MedRxiv Preprints

BioRxiv and MedRxiv are the preprint servers for biology and health sciences respectively, operated by Cold Spring Harbor Laboratory. Here are the latest preprint articles (which are not peer-reviewed) from BioRxiv and MedRxiv.

Basal Forebrain & Food Avoidance

Neurons in the basal forebrain play specific roles in regulating feeding. Here are the latest discoveries pertaining to the basal forebrain and food avoidance.