PMID: 10798652May 8, 2000Paper

Experimental glaucoma and cell size, density, and number in the primate lateral geniculate nucleus

Investigative Ophthalmology & Visual Science
A J WeberPaul L Kaufman

Abstract

To examine the effects that elevated intraocular pressure (IOP), a glaucoma risk factor, has on the size, density, and number of neurons in the primate lateral geniculate nucleus (LGN). The monkey model of experimental glaucoma was combined with standard histologic staining and analysis techniques. Fourteen animals were examined. Mean IOPs higher than 40 mm Hg for 2.5, 4, 8, and 24 weeks resulted in reductions of 10% to 58% in the cross-sectional areas of LGN neurons receiving input from the glaucomatous eye. Reductions for animals with lower mean IOPs (37 and 28 mm Hg) for 16 and 27 weeks were 16% and 30%, respectively. Neurons receiving input from the normal eye also were reduced in size (4 -26%). No differential effect in cell size was seen for magnocellular versus parvocellular neurons. Elevation of IOP resulted in an increase in cell density in all layers of the LGN. The increase was approximately two times greater in parvocellular (59%) than magnocellular (31%) layers. When corrected for volumetric shrinkage of the LGN, the estimated loss of neurons was approximately four times greater in the magnocellular than parvocellular layers (38% versus 10%). Elevation of IOP affects the size, density, and number of neurons in the ...Continue Reading

Related Concepts

Cell Density
Medial Geniculate Body
Glaucoma, Open-Angle
Physiologic Intraocular Pressure
Macaca fascicularis
Macaca mulatta
Neurons
Ocular Hypertension
Trabecular Meshwork Structure
Cell Volume

Trending Feeds

COVID-19

Coronaviruses encompass a large family of viruses that cause the common cold as well as more serious diseases, such as the ongoing outbreak of coronavirus disease 2019 (COVID-19; formally known as 2019-nCoV). Coronaviruses can spread from animals to humans; symptoms include fever, cough, shortness of breath, and breathing difficulties; in more severe cases, infection can lead to death. This feed covers recent research on COVID-19.

Evolution of Pluripotency

Pluripotency refers to the ability of a cell to develop into three primary germ cell layers of the embryo. This feed focuses on the mechanisms that underlie the evolution of pluripotency. Here is the latest research.

Lipidomics & Rhinovirus Infection

Lipidomics can be used to examine the lipid species involved with pathogenic conditions, such as viral associated inflammation. Discovered the latest research on Lipidomics & Rhinovirus Infection.

Glut1 Deficiency

Glut1 deficiency, an autosomal dominant, genetic metabolic disorder associated with a deficiency of GLUT1, the protein that transports glucose across the blood brain barrier, is characterized by mental and motor developmental delays and infantile seizures. Follow the latest research on Glut1 deficiency with this feed.

Chronic Fatigue Syndrome

Chronic fatigue syndrome is a disease characterized by unexplained disabling fatigue; the pathology of which is incompletely understood. Discover the latest research on chronic fatigue syndrome here.

Alzheimer's Disease: MS4A

Variants within the membrane-spanning 4-domains subfamily A (MS4A) gene cluster have recently been implicated in Alzheimer's disease in genome-wide association studies. Here is the latest research on Alzheimer's disease and MS4A.

STING Receptor Agonists

Stimulator of IFN genes (STING) are a group of transmembrane proteins that are involved in the induction of type I interferon that is important in the innate immune response. The stimulation of STING has been an active area of research in the treatment of cancer and infectious diseases. Here is the latest research on STING receptor agonists.

Laryngeal Neoplasms

Laryngeal Neoplasms occur in the Larynx and are typically associated with smoking and alcohol consumption. Discover the latest research on Laryngeal Neoplasms here.

Cell Atlas Along the Gut-Brain Axis

Profiling cells along the gut-brain axis at the single cell level will provide unique information for each cell type, a three-dimensional map of how cell types work together to form tissues, and insights into how changes in the map underlie health and disease of the GI system and its crosstalk with the brain. Disocver the latest research on single cell analysis of the gut-brain axis here.